216 research outputs found

    Biomarker Localization From Deep Learning Regression Networks

    Get PDF
    Biomarker estimation methods from medical images have traditionally followed a segment-and-measure strategy. Deep-learning regression networks have changed such a paradigm, enabling the direct estimation of biomarkers in databases where segmentation masks are not present. While such methods achieve high performance, they operate as a black-box. In this work, we present a novel deep learning network structure that, when trained with only the value of the biomarker, can perform biomarker regression and the generation of an accurate localization mask simultaneously, thus enabling a qualitative assessment of the image locus that relates to the quantitative result. We showcase the proposed method with three different network structures and compare their performance against direct regression networks in four different problems: pectoralis muscle area (PMA), subcutaneous fat area (SFA), liver mass area in single slice computed tomography (CT), and Agatston score estimated from non-contrast thoracic CT images (CAC). Our results show that the proposed method improves the performance with respect to direct biomarker regression methods (correlation coefficient of 0.978, 0.998, and 0.950 for the proposed method in comparison to 0.971, 0.982, and 0.936 for the reference regression methods on PMA, SFA and CAC respectively) while achieving good localization (DICE coefficients of 0.875, 0.914 for PMA and SFA respectively, p < 0.05 for all pairs). We observe the same improvement in regression results comparing the proposed method with those obtained by quantify the outputs using an U-Net segmentation network (0.989 and 0.951 respectively). We, therefore, conclude that it is possible to obtain simultaneously good biomarker regression and localization when training biomarker regression networks using only the biomarker value.This work was supported in part by the National Institutes of Health (NHLBI) under Grant R01HL116931, Grant R21HL14042, and Grant R01HL149877, in part by the COPDGene Study through the NHLBI under Grant NCT00608764, Grant U01 HL089897, and Grant U01 HL089856, and in part by the COPD Foundation through contributions made to the Industry Advisory Committee comprised of AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Novartis, and Sunovion

    Lung CD8+ T cells in COPD have increased expression of bacterial TLRs

    Full text link
    Abstract Background Toll-like receptors (TLRs) on T cells can modulate their responses, however, the extent and significance of TLR expression by lung T cells, NK cells, or NKT cells in chronic obstructive pulmonary disease (COPD) is unknown. Methods Lung tissue collected from clinically-indicated resections (n = 34) was used either: (a) to compare the expression of TLR1, TLR2, TLR2/1, TLR3, TLR4, TLR5, TLR6 and TLR9 on lung CD8+ T cells, CD4+ T cells, NK cells and NKT cells from smokers with or without COPD; or (b) to isolate CD8+ T cells for culture with anti-CD3ε without or with various TLR ligands. We measured protein expression of IFN-γ, TNF-α, IL-13, perforin, granzyme A, granzyme B, soluble FasL, CCL2, CCL3, CCL4, CCL5, CCL11, and CXCL9 in supernatants. Results All the lung subsets analyzed demonstrated low levels of specific TLR expression, but the percentage of CD8+ T cells expressing TLR1, TLR2, TLR4, TLR6 and TLR2/1 was significantly increased in COPD subjects relative to those without COPD. In contrast, from the same subjects, only TLR2/1 and TLR2 on lung CD4+ T cells and CD8+ NKT cells, respectively, showed a significant increase in COPD and there was no difference in TLR expression on lung CD56+ NK cells. Production of the Tc1 cytokines IFN-γ and TNF-α by lung CD8+ T cells were significantly increased via co-stimulation by Pam3CSK4, a specific TLR2/1 ligand, but not by other agonists. Furthermore, this increase in cytokine production was specific to lung CD8+ T cells from patients with COPD as compared to lung CD8+ T cells from smokers without COPD. Conclusions These data suggest that as lung function worsens in COPD, the auto-aggressive behavior of lung CD8+ T cells could increase in response to microbial TLR ligands, specifically ligands against TLR2/1.http://deepblue.lib.umich.edu/bitstream/2027.42/112427/1/12931_2012_Article_1320.pd

    Airway dilation in bronchiolitis obliterans after allogeneic hematopoietic stem cell transplantation

    Get PDF
    SummaryRationaleBronchiolitis obliterans syndrome (BOS) is a late, non-infectious pulmonary complication following hematopoietic stem cell transplantation (HSCT). There is minimal data published on quantitative radiologic characterization of airway remodeling in these subjects.ObjectivesTo examine quantitative measurements of airway morphology and their correlation with lung function in a cohort of patients who underwent HSCT and developed BOS.MethodsAll adult patients who underwent allogeneic HSCT at the Dana-Farber Cancer Institute/Brigham and Women's Hospital (n = 1854) between January 1st 2000 and June 30th 2010 were screened for the development of BOS. Clinically acquired high resolution CT (HRCT) scans of the chest were collected. For each subjects discrete measures of airway wall area were performed and the square root of wall area of a 10-mm luminal perimeter (Pi10) was calculated.Measurements and main resultsWe identified 88 cases of BOS, and 37 of these patients had available HRCT. On CT scans obtained after BOS diagnosis, the Pi10 decreased (consistent with airway dilation) as compared with pre-BOS values (p < 0.001). After HSCT the Pi10 correlated with FEV1% predicted (r = 0.636, p < 0.0001), and RV/TLC% predicted (r = −0.736, p < 0.0001), even after adjusting for age, sex and total lung capacity (p < 0.0001 for both).ConclusionsOn HRCT scan BOS is characterized by central airway dilation, the degree of which is correlated to decrements in lung function. This is opposite of what has been previously demonstrated in COPD and asthma that quantitative measure of proximal airway wall thickening directly correlate with pulmonary function. Our data suggests that the pathologic process affecting the central airways is different from the pathology observed in the distal airways. Further work is needed to determine if such change can be used as a sensitive and specific tool for the future diagnosis and staging of BOS

    Differences in Respiratory Symptoms and Lung Structure Between Hispanic and Non-Hispanic White Smokers: A Comparative Study

    Full text link
    Background: Prior studies have demonstrated that U.S. Hispanic smokers have a lower risk of decline in lung function and chronic obstructive pulmonary disease (COPD) compared with non-Hispanic whites (NHW). This suggests there might be racial-ethnic differences in susceptibility in cigarette smoke-induced respiratory symptoms, lung parenchymal destruction, and airway and vascular disease, as well as in extra-pulmonary manifestations of COPD. Therefore, we aimed to explore respiratory symptoms, lung function, and pulmonary and extra-pulmonary structural changes in Hispanic and NHW smokers. Methods: We compared respiratory symptoms, lung function, and computed tomography (CT) measures of emphysema-like tissue, airway disease, the branching generation number (BGN) to reach a 2-mm-lumen-diameter airway, and vascular pruning as well as muscle and fat mass between 39 Hispanic and 39 sex-, age- and smoking exposure-matched NHW smokers. Results: Hispanic smokers had higher odds of dyspnea than NHW after adjustment for COPD and asthma statuses (odds ratio[OR] = 2.96; 95% confidence interval [CI] 1.09-8.04), but no significant differences were found in lung function and CT measurements. Conclusions: While lung function and CT measures of the lung structure were similar, dyspnea is reported more frequently by Hispanic than matched-NHW smokers. It seems to be an impossible puzzle but it's easy to solve a Rubik' Cube using a few algorithms

    Impact of self-reported Gastroesophageal reflux disease in subjects from COPDGene cohort

    Full text link
    Abstract Background The coexistence of gastroesophageal reflux disease (GERD) and COPD has been recognized, but there has been no comprehensive evaluation of the impact of GERD on COPD-related health status and patient-centered outcomes. Methods Cross-sectional and longitudinal study of 4,483 participants in the COPDGene cohort who met GOLD criteria for COPD. Physician-diagnosed GERD was ascertained by questionnaire. Clinical features, spirometry and imaging were compared between COPD subjects without versus with GERD. We evaluated the relationship between GERD and symptoms, exacerbations and markers of microaspiration in univariate and multivariate models. Associations were additionally tested for the confounding effect of covariates associated with a diagnosis of GERD and the use of proton-pump inhibitor medications (PPIs). To determine whether GERD is simply a marker for the presence of other conditions independently associated with worse COPD outcomes, we also tested models incorporating a GERD propensity score. Results GERD was reported by 29% of subjects with female predominance. Subjects with GERD were more likely to have chronic bronchitis symptoms, higher prevalence of prior cardiovascular events (combined myocardial infarction, coronary artery disease and stroke 21.3% vs. 13.4.0%, p < 0.0001). Subjects with GERD also had more severe dyspnea (MMRC score 2.2 vs. 1.8, p < 0.0001), and poorer quality of life (QOL) scores (St. George’s Respiratory Questionnaire (SGRQ) total score 41.8 vs. 34.9, p < 0.0001; SF36 Physical Component Score 38.2 vs. 41.4, p < 0.0001). In multivariate models, a significant relationship was detected between GERD and SGRQ (3.4 points difference, p < 0.001) and frequent exacerbations at baseline (≥2 exacerbation per annum at inclusion OR 1.40, p = 0.006). During a mean follow-up time of two years, GERD was also associated with frequent (≥2/year exacerbations OR 1.40, p = 0.006), even in models in which PPIs, GERD-PPI interactions and a GERD propensity score were included. PPI use was associated with frequent exacerbator phenotype, but did not meaningfully influence the GERD-exacerbation association. Conclusions In COPD the presence of physician-diagnosed GERD is associated with increased symptoms, poorer QOL and increased frequency of exacerbations at baseline and during follow-up. These associations are maintained after controlling for PPI use. The PPI-exacerbations association could result from confounding-by-indication.http://deepblue.lib.umich.edu/bitstream/2027.42/134572/1/12931_2014_Article_1500.pd

    Impact of self-reported Gastroesophageal reflux disease in subjects from COPDGene cohort

    Get PDF
    Abstract Background The coexistence of gastroesophageal reflux disease (GERD) and COPD has been recognized, but there has been no comprehensive evaluation of the impact of GERD on COPD-related health status and patient-centered outcomes. Methods Cross-sectional and longitudinal study of 4,483 participants in the COPDGene cohort who met GOLD criteria for COPD. Physician-diagnosed GERD was ascertained by questionnaire. Clinical features, spirometry and imaging were compared between COPD subjects without versus with GERD. We evaluated the relationship between GERD and symptoms, exacerbations and markers of microaspiration in univariate and multivariate models. Associations were additionally tested for the confounding effect of covariates associated with a diagnosis of GERD and the use of proton-pump inhibitor medications (PPIs). To determine whether GERD is simply a marker for the presence of other conditions independently associated with worse COPD outcomes, we also tested models incorporating a GERD propensity score. Results GERD was reported by 29% of subjects with female predominance. Subjects with GERD were more likely to have chronic bronchitis symptoms, higher prevalence of prior cardiovascular events (combined myocardial infarction, coronary artery disease and stroke 21.3% vs. 13.4.0%, p < 0.0001). Subjects with GERD also had more severe dyspnea (MMRC score 2.2 vs. 1.8, p < 0.0001), and poorer quality of life (QOL) scores (St. George’s Respiratory Questionnaire (SGRQ) total score 41.8 vs. 34.9, p < 0.0001; SF36 Physical Component Score 38.2 vs. 41.4, p < 0.0001). In multivariate models, a significant relationship was detected between GERD and SGRQ (3.4 points difference, p < 0.001) and frequent exacerbations at baseline (≥2 exacerbation per annum at inclusion OR 1.40, p = 0.006). During a mean follow-up time of two years, GERD was also associated with frequent (≥2/year exacerbations OR 1.40, p = 0.006), even in models in which PPIs, GERD-PPI interactions and a GERD propensity score were included. PPI use was associated with frequent exacerbator phenotype, but did not meaningfully influence the GERD-exacerbation association. Conclusions In COPD the presence of physician-diagnosed GERD is associated with increased symptoms, poorer QOL and increased frequency of exacerbations at baseline and during follow-up. These associations are maintained after controlling for PPI use. The PPI-exacerbations association could result from confounding-by-indication.http://deepblue.lib.umich.edu/bitstream/2027.42/109476/1/12931_2014_Article_1500.pd

    Relationship between quantitative CT metrics and health status and BODE in chronic obstructive pulmonary disease

    Full text link
    Background The value of quantitative CT (QCT) to identify chronic obstructive pulmonary disease (COPD) phenotypes is increasingly appreciated. The authors hypothesised that QCT-defined emphysema and airway abnormalities relate to St George’s Respiratory Questionnaire (SGRQ) and Body-Mass Index, Airflow Obstruction, Dyspnea and Exercise Capacity Index (BODE). Methods 1200 COPDGene subjects meeting Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria for COPD with QCT analysis were included. Total lung emphysema was measured using the density mask technique with a 950 Hounsfield unit threshold. An automated programme measured mean wall thickness (WT), wall area percentage (WA%) and 10 mm lumenal perimeter (pi10) in six segmental bronchi. Separate multivariate analyses examined the relative influence of airway measures and emphysema on SGRQ and BODE. Results In separate models predicting SGRQ score, a 1 unit SD increase in each airway measure predicted higher SGRQ scores (for WT, 1.90 points higher, p=0.002; for WA%, 1.52 points higher, p=0.02; for pi10, 2.83 points higher p<0.001). The comparable increase in SGRQ for a 1 unit SD increase in emphysema percentage in these models was relatively weaker, significant only in the pi10 model (for emphysema percentage, 1.45 points higher, p=0.01). In separate models predicting BODE, a 1 unit SD increase in each airway measure predicted higher BODE scores (for WT, 1.07-fold increase, p<0.001; for WA%, 1.20-fold increase, p<0.001; for pi10, 1.16-fold increase, p<0.001). In these models, emphysema more strongly influenced BODE (range 1.24-1.26-fold increase, p<0.001). Conclusion Emphysema and airway disease both relate to clinically important parameters. The relative influence of airway disease is greater for SGRQ; the relative influence of emphysema is greater for BODE.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91946/1/2012 Thorax Relationship between quantitative CT metrics and health status and BODE in chronic obstructive pulmonary disease.pd

    Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD

    Get PDF
    Background: Gas trapping quantified on chest CT scans has been proposed as a surrogate for small airway disease in COPD. We sought to determine if measurements using paired inspiratory and expiratory CT scans may be better able to separate gas trapping due to emphysema from gas trapping due to small airway disease. Methods: Smokers with and without COPD from the COPDGene Study underwent inspiratory and expiratory chest CT scans. Emphysema was quantified by the percent of lung with attenuation < −950HU on inspiratory CT. Four gas trapping measures were defined: (1) Exp−856, the percent of lung < −856HU on expiratory imaging; (2) E/I MLA, the ratio of expiratory to inspiratory mean lung attenuation; (3) RVC856-950, the difference between expiratory and inspiratory lung volumes with attenuation between −856 and −950 HU; and (4) Residuals from the regression of Exp−856 on percent emphysema. Results: In 8517 subjects with complete data, Exp−856 was highly correlated with emphysema. The measures based on paired inspiratory and expiratory CT scans were less strongly correlated with emphysema. Exp−856, E/I MLA and RVC856-950 were predictive of spirometry, exercise capacity and quality of life in all subjects and in subjects without emphysema. In subjects with severe emphysema, E/I MLA and RVC856-950 showed the highest correlations with clinical variables. Conclusions: Quantitative measures based on paired inspiratory and expiratory chest CT scans can be used as markers of small airway disease in smokers with and without COPD, but this will require that future studies acquire both inspiratory and expiratory CT scans
    corecore