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Biomarker Localization from Deep Learning
Regression Networks
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Abstract—Biomarker estimation methods from medical im-
ages have traditionally followed a segment-and-measure strat-
egy. Deep-learning regression networks have changed such a
paradigm, enabling the direct estimation of biomarkers in
databases where segmentation masks are not present. While
such methods achieve high performance, they operate as a
black-box. In this work, we present a novel deep learning
network structure that, when trained with only the value of the
biomarker, can perform biomarker regression and the generation
of an accurate localization mask simultaneously, thus enabling
a qualitative assessment of the image locus that relates to the
quantitative result. We showcase the proposed method with three
different network structures and compare their performance
against direct regression networks in four different problems:
pectoralis muscle area (PMA), subcutaneous fat area (SFA),
liver mass area in single slice computed tomography (CT), and
Agatston score estimated from non-contrast thoracic CT images
(CAC). Our results show that the proposed method improves
the performance with respect to direct biomarker regression
methods (correlation coefficient of 0.978, 0.998, and 0.950 for
the proposed method in comparison to 0.971, 0.982, and 0.936
for the reference regression methods on PMA, SFA and CAC
respectively) while achieving good localization (DICE coefficients
of 0.875, 0.914 for PMA and SFA respectively, p < 0.05 for all
pairs). We observe the same improvement in regression results
comparing the proposed method with those obtained by quantify
the outputs using an U-Net segmentation network (0.989 and
0.951 respectively). We, therefore, conclude that it is possible to
obtain simultaneously good biomarker regression and localization
when training biomarker regression networks using only the
biomarker value.

Index Terms—Biomarker direct regression, Biomarker local-
ization, Coronary Artery Calcification, Convolutional Neural
Networks
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I. INTRODUCTION

IN medical environments, a biomarker refers to a trait that
describes the biological state of a patient. In this definition

of [1], image-based biomarkers are inferred from the quantifi-
cation of any tissue or organ that can be related to a disease.
Many biomarkers relate to the area or volume of structures
and, to obtain them, a segmentation is performed to delimit the
target area or volume before measuring the final value, such
paradigm is often referred as “segment-and-measure”. Manual
biomarker estimation is often time-consuming, restricting the
number of biomarkers readily available in clinical practice.
Since the inception of medical image processing, structure
segmentation has been one of the main tasks, mainly to facil-
itate biomarker discovery or their implementation in clinical
practice.

Standard “segment-and-measure” methods used mathemati-
cal properties of the structures to locate and segment them. In
recent years, through the use of machine learning methods, and
more particularly, convolutional neural networks, the focus has
been on developing a database with images and corresponding
segmentations and train a machine learning based method.
Obtaining a large enough training database is often expensive,
especially when the number of samples required for it to work
is large.

Datasets obtained from clinical practice often have the
value of the biomarker associated with the image, but no
segmentation mask associated with it is stored. To use these
datasets, direct biomarker regression methods have emerged.
Examples have appeared in [2] or [3], using a deep learning
regression framework. While achieving high performance and
not requiring intermediate segmentations, these approaches
operate as a black-box, not indicating where the measurement
is coming from the area of interest, if at all.

In this work, we propose a network structure that regresses
the biomarker value while simultaneously producing the lo-
cation of the structure that has produced such value at a
pixel-level resolution. The core of the proposed network is an
encoder-decoder segmentation structure that outputs a binary
image. Since no reference mask is available, we aggregate
the information of the values of such a mask to estimate
the biomarker value, which is then compared to the reference
standard to train the network. A multiplication step with pixel-
based region candidates is performed to reduce the space
of possible solutions. The networks are optimized using the
L2 cost function between the computed biomarker and the
reference standard. An example of the proposed operational
block can be found in Fig. 1.
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Fig. 1. Proposed method block. This structure can be attached to any network to generate both, regression biomarker value and his associated localization.

Inferring attention maps from convolutional neural networks
in medical applications is an active area of research. For
instance, [4] uses a CNN for pixel-wise lesion detection, the
work of [5] describes a system composed of two CNNs, the
first one performs a field of view alignment followed by a
second network than compute the direct regression of the cal-
cium score, or [6] propose a weakly supervised chest x-net for
thoracic diseases classification and lesion localization. Finally,
in the context of natural image processing, [7] uses fully CNN
for semantic segmentation. However, all these approaches
often return low-resolution results, require of prior knowledge
not guided by biomarker estimation or the localization maps
must be obtained in post-process after modifying the network
structure, aspects from which the proposed method does not
suffer.

We are going to evaluate the proposed method within
the context of three image-based biomarkers: subcutaneous
fat area and pectoralis muscle area from 2D axial slices of
non-contrast CT images and Agatston score computation in
3D thoracic non-contrast computed tomography images. We
further evaluate the proposed method with the regression of
liver tumor area from CT axial slices.

Cachexia has been shown to be of clinical relevance in
Chronic Obstructive Pulmonary Disease (COPD) and lung
cancer as is illustrated by [8] and [9]. Pectoralis muscle and
subcutaneous fat areas, measured in computed tomography
scans using an axial slice at the level of the transversal aorta,
are two biomarkers that have been proven superior to body
mass index (BMI) [9]. Such biomarkers have been attempted
to automate through the use of atlas-based techniques, as for
example in the work of [10], or the standard U-Net network
used by [11].

The Coronary Artery Calcification (CAC) is a heart disease
that consist in the obstruction by calcium particles in the inside
of the coronary arteries. [12] proposed a method to obtain a
biomarker value as an indicator of severity. Such biomarker
consists in measuring the volume of the calcifications and
weighting it by a factor related to the maximum intensity
of each individual CAC with an intensity value greater than
130 Hounsfield Units (HU), adding the per lesion value to

get a global biomarker value. Recent studies have shown
excellent correlation between the Agatston score computed
in cardiac ECG-gated CT and in no ECG-gated chest CT
[13]. Computing the Agatston score is an active area of
research. We can find examples of this in the works of
[14] who uses a random forest tree for classify a list of
coronary artery calcification (CAC) candidates described with
a set of features, [15] with a K-Nearest-Neighbor (KNN)
classifier or [16] who evaluated some different classification
methods including KNN, linear/quadratic discriminant and
Support Vector Machine (SVM). In contrast, the work of
[17] focus their method in the heart localization prior to
the CAC segmentation/measure. More recent work have used
convolutional neural networks, for instance [18] used a pair
of convolutional networks for, in first place, identifying the
candidates voxels and, then, a pixel wise classification as CAC
or Non-CAC is performed for obtain the segmentation region
and be able to infer the biomarker value from it.

The Liver cancer was the seventh most common type
of cancer in 2018, and together with the stomach cancer,
represent the second highest number of cancer deaths (both
with 8.2% of total cases, around 782,000 each, worldwide)
[19]. Tumor localization and quantification are an important
task for enabling treatments like radiotherapy [20] or thermal
ablations [21], among others. The tumor volume has proven
its superiority over the diameter as staging biomarker [22],
this raises its importance in automatic systems and makes it
possible to use it to identify complex structures from its value.

II. MATERIAL AND METHODS

A. Datasets

COPDGene is a multi-center observational study designed
to understand the evolution and genetic determinants of COPD
in smokers [23]. 10,000 subjects, with a distribution of non-
Hispanic White and African American of 2/3 and 1/3 re-
spectively with ages between 45 and 80 years, have been
enrolled in the study and undergone pulmonary non-ECG
gated CT scanning with a scanner of at least 16 detectors
(GE LS16, VCT-64 and HD750, Philips 16, 40 and 64 Slice,
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and Philips ICT-128 and ICT-256). For each patient, a CT
with full inspiration and normal expiration states was acquired.
The inspiratory scans of this database were annotated by
independent groups for CAC, PMA and SFA. We therefore
consider only those scans for processing.

Fig. 2. CAC Agatston Score normalized distribution on train, validation
and test subsets. The Y axis is displayed in logarithmic scale to improve
representation.

TABLE I
CAC RISK GROUP SAMPLES DISTRIBUTION IN TRAIN, VALIDATION AND

TEST SUBSETS.

Group 0 Group 1 Group 2 Group 3 Group 4 Total
Train 1920 1064 984 492 203 4663

Validation 206 114 106 53 21 500
Test 407 226 209 104 42 988

Fig. 3. CAC risk group sample proportion plot.

1) Coronary Artery Calcifications: The Agatston score was
computed in 6983 of COPDGene database, forming the dataset
in which we train and evaluate the proposed method. We
automatically select a region of interest (ROI) centered around
the heart in each CT scan using the method of [24] and [25].
We use a prefixed ROI size of 192× 192× 224 to avoid the
need for re-scaling the reference standard Agatston score. Data
are not scaled to keep the original size ratio. Mistakes in the
automated location of the heart were eliminated by manual

Fig. 4. CAC examples, each row represent the patient heart bounding box,
columns correspond to sagittal, coronal and axial plane. Bones and aorta
calcifications have the same intensity range than CAC.

inspection, resulting in 6651 images that are divided between
a training set (n = 4663), a validation set (n = 500), and a
testing set (n = 988). Examples of the regions of the heart
can be found in Fig. 4. The values of the Agatston score in
this database are highly skewed towards 0, as can be seen in
Fig. 2; this also affects the distribution in risk groups, where
the number of subjects decreases as the group increases as
shown in the Table I. However, we have divided the subsets
to ensure an equal proportion in all risk groups, as depicted
in Fig. 3.

2) Pectoralis Muscle Area and Subcutaneous Fat Area: The
data used consists of 10,000 axial plane slices acquired from
CT scans of the COPDGene database. The data were analyzed
for the study of [9]. An image analyst trained explicitly for
this task identified the location of the upmost part of the
transversal aorta and annotated the pectoralis muscle area
(PMA) and the subcutaneous fat area (SFA) with a semi-
automated segmentation interface based on the Chest Imaging
Platform [26]. We divided the data randomly into three sub-
sets: training (5000 cases), validation (2000), and test (3000).
For the training and validation datasets, we do not use the
segmentations provided by the expert, we only keep the value
of their area. We keep the segmentations on the test dataset
for evaluation purposes. Examples of the segmentations of
pectoralis muscle area and subcutaneous fat can be found in
Fig. 7. The distribution of the PMA and SFA values are also
highly skewed, as can be seen in Fig. 5 and Fig. 6. However,
they keep approximately the same proportional ratio in all
subsets.

3) Liver Tumor Area: The data were obtained from LITS17
challenge [27] and consist of 130 CT scans with reference
segmentations for the liver and liver tumors separately. The
scans share the same resolution in axial plane (512×512) and
a different amount of slices on the third axis. The scans were
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Fig. 5. PMA normalized distribution on the train, validation and test subsets.

Fig. 6. SFA normalized distribution on the train, validation and test subsets.

Fig. 7. Reference standard segmentations of the pectoralis muscle (blue) and
subcutaneous fat (orange) for different patients.

divided between train subset (100 scans), validation subset (12
scans), and test subset (18 scans). For our method, the tumor
reference segmentations were removed, and liver segmentation
references were used as candidates’ masks. This contrasts with
what has been done in the other problems in the way that now
candidates are not obtained by a contrast range, but include
the whole organ of interest. Finally, we selected only the slices
where tumors are present and split them into 2D slices with
corresponding annotations of the area values calculated from
the structure of the tumor in each slice.

B. Simultaneous biomarker and localization method

In this work, we propose a deep learning regression network
able to regress the biomarker and to generate a mask from
which the biomarker is generated. This has strong similarities
to a segmentation problem, but instead of having segmentation
masks for training, we use the value of the area or volume of
the structure that is measured as the biomarker.

Inspired by this intuition, we propose the network of Fig. 1.
The input image follows two paths of analysis. The first
path consists of a set of rough segmentation operations to
generate a mask of candidate points. Such mask should be
highly sensitive to the pixels or voxels of the structure, even
if it is non-specific. In this work, we have used a simple
threshold operation, since muscle can be found in the range
between [-20, 100], fat between [-140, -70] and coronary
artery calcifications between [-500, 3000], however, more
sophisticated methods could have been used. This mask serves
as a pre-selection of the pixels or voxels that are aggregated
to compute the biomarker.

The input image is also analyzed by a deep neural network
that follows the structure of traditional segmentation networks,
as the U-Net, a SE-Net, or a SD-Net. This is the network
that is trained, but, unlike segmentation networks, we do not
use segmentation masks for training. Instead, its output is
multiplied by the mask of candidate points and input to a
rectified linear unit to generate the localization mask. The
localization mask is aggregated through a summation operation
to generate the biomarker. The value of this biomarker is
compared against the reference standard, and the error used
to train the network.

The loss function used to train the network is the squared
error between the estimated biomarker and the biomarker value
L2(y, ŷ), where y represents the biomarker value, ŷ represents
the estimated biomarker.

The proposed method is agnostic with respect to the network
structure of choice. To demonstrate this characteristic, we
implemented our approach with three different segmentation
networks: a U-Net structure [28], the Squeeze & Excitation
modified version, SE-Net, explained in [29], and the SD-Net
[30]. The SD-Net combines the U-Net Skip connections and
the passing of indices for unpooling operations as it is used
in the DeconvNet proposed for [31]. The last network has
a significant limitation that consists in the obligation to have
the same number of kernels in all convolutional layers in both,
encoding and decoding part, avoiding keep the same trainable
parameters in each level. Depending on the dimensionality of
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the regression problem, the network internal operations will
be 2D or 3D. Please note that since there is no available
implementation of the max-pooling with indices and unpooling
operations in their 3D versions required for SD-Net, we
discarded this network for CAC study.

The details of the network structures used in this work are
as follow:

1) 2D U-Net: U-Net architecture [28] is composed of
four encoding blocks consisting of two convolutions with a
3 × 3 kernels follow by a max-pooling operation of size 2.
The number of convolution kernels increases as the network
descends in-depth, with 32, 64, 128, 256 kernels in each level.
Two more convolution layers, both with 512 (3× 3) kernels,
are performed in the inner level before the decoding part. The
decoder is composed of four Up-sampling and convolution
blocks, where the input of the last encoder layer is first resized
with an up-sampling operation of size 2. A convolution layer
with 2 × 2 kernels is applied before concatenating its output
to the output of the encoder block at the same level. Then,
two last convolutions with 3 × 3 kernels are performed. As
the opposite of the encoder part, the number of convolutional
kernel increase from 256 in the inner layer to 128, 64, and
32. All convolutions use a ReLU activation function and batch
normalization. To finish, a last 1×1 single kernel convolution
with sigmoid activation ensures the output is in the range [0, 1].

2) 2D SE-Net: Squeeze and Excitation Network (SE-Net)
follows the same structure as U-Net with the addition of the
scSE blocks, defined in [29], before the pooling operations
of the encoder and after each decoder up-sampling blocks.
This scSE operation is the result of the addition of two
different computation paths. The first computes the global
average pooling of the input, followed by two dense layers, one
with half of the units that channels have the input and ReLU
activations, and the other with the same units that channels,
to keep the amount of data, with a sigmoid activation. Then,
the output of the last dense layer is multiplied by the input
data; this works as channel Weighing by relevance giving
those who contribute the most a greater influence. The second
computation path consists of a single 1 × 1 and one kernel
convolution with a sigmoid activation, multiplying its output
by the input data for performing a spatial weighing.

3) 2D SD-Net: Skip Deconvolution Networks [30] differs
significantly in terms of layers composition. Although it
maintains the appearance of an encoder-decoder, it uses an
unpooling operation where the generated output is a recon-
struction from a low-level data representation in conjunction
with the indexes form where the data was obtained in the
encoder pooling operation. In contrast to the traditional U-Net,
this kind of network keeps the same number of convolutional
kernels across all the network levels, 128 in this case. This is
necessary to be able to use the unpooling operation with the
indexes extracted from the encode pooling operations. As a
summary, the network is composed of three encoder blocks,
which consist of two convolution operations with 3×3 kernels
and one max pooling layer that returns both the output and the
indices from which it comes. In the inner part of the network,
two convolutions are performed with the same kernel shape.
The decoder part consists of three decoder blocks composed

of the unpooling operation using indices extracted from the
encoder same level block, followed by a convolution layer,
the concatenation of the same level encoder output and two
more convolution layers. All operations use a ReLU activation
function. To finish, a last 1× 1 single kernel convolution with
sigmoid activation ensures the output is in the range [0, 1].

4) 3D U-Net: The 3D version of the U-Net follows the
same structure of the original 2D implementation but using
3 × 3 × 3 3D convolutional kernels instead of the originals
3 × 3. The number of kernels remains the same across all
levels, as well as the activation types.

5) 3D SE-Net: Like happens with the U-Net, the 3D SE-
Net keeps the same number kernels and activation types as its
2D version. Exchanging the kernels for their 3-dimensional
version.

C. Computation of the Agatston score

The Agatston score, due to its non-linear relationship to
image intensity, cannot be directly computed as the area or
volume of structures of interest. Instead, a post-processing
method of the localization mask is generated to obtain it from
the localization mask using the formula described in [12].
The CAC computation consists of quantifying each connected
component blob separately by taking each axial slice of the
output localization volume and multiply by a factor based on
the highest value of intensity by its area, finishing with the
summation of all these values for computing a final aggregated
biomarker. Please note that since the description of the original
method developed by Agatston was designed to scans of
fixed axial spacing resolution of 3mm we must adapt the
computation multiplying the final value by a normalization
factor.

D. Baseline methods

As baseline, three regression networks based in the encoding
part of the network structures cited above were used, extracted
from the remove of decoding blocks of the different network
structures described in Section II-B. Two fully connected
layers of 512 units with ReLU activation and one linear
activated unit were added at the output of the networks to
perform the regression task. Besides, for the CAC problem, we
implemented the structure defined in previous work of [2] that
consist of a simple encoder composed of three convolution-
max-pooling blocks. The loss function used in all this baseline
implementations is the mean absolute error (MAE), since it
obtained the best performance in the regression networks loss
comparison results of [32].

E. Training

The networks were trained separately over the different
training sets, using the validation datasets to evaluate the
performance at each training iteration. Early stopping criteria
were used, which consisted of a basic convergence check over
the validation loss, keeping the best model for testing purposes.
The training learning rate was fixed in 1e−4, using an Adam
optimizer with standard parameters.
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Data augmentation was used due to the strong data imbal-
ance present on the datasets (See Figs. 2, 5 and 6). For the
CAC problem, the data augmentation technique used consisted
of generating random displacements over the three axes, using
a spherical probabilistic volume. This is done to ensure that
the new augmented sample is equidistant from the center of
the heart in all directions. The data augmentation is done
on-the-fly, and to ensure reproducibility, the random seed of
the data augmentation policy is fixed. Random rotations and
translations were performed for the other two problems.

F. Evaluation metric

All metrics were calculated using the test dataset in each
problem, which was used only to report the results of Table II.

The evaluation metrics were chosen depending on the
particular problem and the availability of reference standard
masks. All regressions were evaluated using Pearson correla-
tion coefficient (ρ) and Inter-Class Correlation (ICC). For the
PMA and SFA problems, the Dice coefficient (d) and Hausdorf
distance (dH) to evaluate Image-based Biomarker localization
performance. For the CAC problem, the regression values are
often discretized in the following risk groups: [0,10), [10,100),
[100,400), [400,1000) and 1000+. We have also computed
the weighted kappa (κ) and accuracy (acc) for the categorical
analysis.

G. Statistical analysis

To compare statistically two regression models against the
reference standard, we employed Williams’s method [33]. The
samples are not statistically independent since both regression
models are tested on the same subjects, having the same
reference method. William’s test takes into account the corre-
lation coefficient between the reference standard and the first
and second methods, as well as the correlation between both
methods to establish a level of significance for the rejection
of the null hypothesis. We establish the limit of statistical
significance at p < 0.05. p-values lower than such limit reject
the null hypothesis.

To test if the Dice scores come from the same distribu-
tions, we used the Kruskal-Wallis statistical method. Upon
rejection of the null hypothesis, we perform a non-parametric
comparison for all pairs of methods using the Dunn method
for joint ranking. We repeat such analysis for the Haussdorf
distances. Statistical analysis was performed with python’s
scipy.stats and scikit-posthocs libraries. The limit of statistical
significance is set at p < 0.05

To compare the confusion matrix for CAC group risk as-
signment from different regression methods, we use the Stuart-
Maxwell test [34]. Statistical significance is set at p < 0.05
(Table IV).

III. RESULTS

A. Regression performance comparison

1) Performance of the regression networks: First, we eval-
uate the regression networks we have trained to obtain a
reference to which compare the proposed method. Focusing

on the baseline regression networks, more complex encoder
networks structures like Enc(U-Net(E)), Enc(SE-Net(E)) or
Enc(SD-Net) reach better regression performance. Specifically,
PMA gets a Pearson correlation (ρ) of 0.951 for baseline in
contrast to the 0.970 with Enc(U-Net), 0.971 of the Enc(SE-
Net), or the 0.965 that is obtained using Enc(SD-Net). The
differences in ρ with respect to the baseline are all statistically
significant as shown in Table III. Similar results are obtained
for SFA, with ρ of 0.971, 0.982, 0.982 and 0.981 respectively,
all statistically significant with respect to the baseline (Supple-
mentary material Table I). Finally, CAC correlation went from
0.920 for the baseline to 0.936 in Enc(U-Net) and 0.931 for
the Enc(SE-Net), reaching again statistical significance with
respect to the baseline (Supplementary material Table II).

2) Performance of simultaneous regression and localization
methods: We have then compared the performance of the
simultaneous regression and localization networks against that
of the direct regression networks. Performance metrics for the
simultaneous regression and biomarker localization networks
are shown on the right-hand part of Table II. Correlation
coefficients among pairs of equivalent network structures and
problems favor the proposed method consistently. For the
PMA problem, the regression network based on the Enc(U-
Net) obtains a ρ coefficient of 0.970, while the proposed U-
Net based regression and localization network (RL-U-Net) has
a ρ of 0.977 (p < 0.05). The same network structure for SFA
obtains ρ = 0.982 for Enc(U-Net) and ρ = 0.998 for RL-
U-Net (p < 0.05). Similar results are obtained with respect
to ρ for CAC: ρ = 0.936 for Enc(U-Net) and ρ = 0.948 for
RL-U-Net (p < 0.05). There is a consistent improvement in
the performance of the proposed networks with respect to the
baseline, as can be seen in Table II. The same reasoning can
be applied for the pairs of networks Enc(SE-Net) - RL-SE-Net
and Enc(SD-Net) - RL-SD-Net.

Figs. 8 and 9 display Bland-Altman analysis and correlation
plots for the PMA and SFA and CAC problems respectively
using the RL-SE-Net. In all three cases, we observe that there
is no systematic error since the Bland-Altmann analysis is
centered around 0. Errors seem to be constant for all ranges
of values in all three cases. Some outliers are present on
the Bland-Altman analysis and are analyzed in detail in the
supplementary material.

3) Regression dependency on network structure: The re-
sults shown in Table II demonstrate that the regression perfor-
mance of the proposed regression and localization networks
does not vary much with respect to the network structure that
is being used as backbone.

Focusing on PMA, the ρ coefficients are of 0.977, 0.978
and 0.971 for the RL-U-Net, the RL-SE-Net, and the RL-SD-
Net respectively, showing a small but statistically significant
discrepancy (p-values between the RL-U-Net and the RL-SE-
Net is < 0.05; between the RL-U-Net and the RL-SD-Net is
< 0.05 and between the RL-SD-Net and the RL-SE-Net is
also < 0.05) as shown in Table III. The same results appear
in the problem of SFA, with ρ coefficients of 0.998, 0.997 and
0.996 for the RL-U-Net, the RL-SD-Net and the RL-SE-Net
respectively. The difference between RL-U-Net and RL-SE-
UNet is not statistically significant (p = 0.41), as shown in
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TABLE II
RESULTS TABLE, PERFORMANCE OF THE DIFFERENT NETWORKS THAT HAVE BEEN TESTED FOR THIS STUDY, DIVIDED INTO TWO MAIN SECTIONS. THE

LEFT-HAND SIDE, LABELED “Regression Networks”, CONTAINS THE RESULTS OF THE REFERENCE METHODS. THE RIGHT-HAND SIDE, ENTITLED
“Regression and Localization Networks”, DISPLAYS THE RESULTS OF THE PROPOSED SIMULTANEOUS BIOMARKER REGRESSION AND LOCALIZATION.

EACH ROW REPRESENTS ONE OF THE PROPOSED PROBLEMS (PMA, SFA OR CAC). EACH COLUMN IS THE PERFORMANCE OF THE CHOSEN NETWORK
ON THE PROBLEMS. ρ AND ICC ARE REPORTED FOR ALL NETWORKS. FOR PMA AND SFA WE ALSO REPORT THE DICE COEFFICIENT d AND THE

AVERAGE HAUSDORFF DISTANCE dH, SINCE REFERENCE SEGMENTATION MASKS FOR THE TEST SET ARE AVAILABLE. FOR THE PROBLEM OF CAC, WE
ALSO REPORT THE WEIGHTED KAPPA COEFFICIENT k AND THE ACCURACY FOR THE DIFFERENT RISK GROUPS.

Encoder Regression Networks Regression and Localization Networks
Baseline Enc(U-Net) Enc(SE-Net) Enc(SD-Net) RL-U-Net RL-SE-Net RL-SD-Net

PMA

ρ = 0.951 ρ = 0.970 ρ = 0.971 ρ = 0.965 ρ = 0.977 ρ = 0.978 ρ = 0.971
ICC = 0.950 ICC = 0.969 ICC = 0.967 ICC = 0.963 ICC = 0.976 ICC = 0.977 ICC = 0.970

d = 0.853 d = 0.875 d = 0.816
dH = 6.422 dH = 7.049 dH = 6.893

SFA

ρ = 0.971 ρ = 0.982 ρ = 0.982 ρ = 0.981 ρ = 0.998 ρ = 0.997 ρ = 0.996
ICC = 0.970 ICC = 0.981 ICC = 0.982 ICC = 0.980 ICC = 0.998 ICC = 0.997 ICC = 0.996

d = 0.914 d = 0.908 d = 0.817
dH = 5.857 dH = 6.016 dH = 7.147

CAC

ρ = 0.920 ρ = 0.936 ρ = 0.931 ρ = 0.948 ρ = 0.950
ICC = 0.919 ICC = 0.926 ICC = 0.931 ICC = 0.946 ICC = 0.950
κ = 0.761 κ = 0.727 κ = 0.753 κ = 0.853 κ = 0.852
acc = 0.780 acc = 0.726 acc = 0.750 acc = 0.885 acc = 0.842

TABLE III
RESULTS OF THE STATISTICAL TESTS PERFORMED BETWEEN ALL PAIRS OF NETWORKS FOR THE PECTORALIS MUSCLE AREA PROBLEM. pc , pd , AND
pdH STAND FOR THE P-VALUES FOR THE REGRESSION, THE DICE MEASUREMENTS, AND THE HAUSSDORF DISTANCES, COMPUTED AS EXPLAINED IN

SECTION II-G. P-VALUES THAT DO NOT REACH THE LEVEL OF SIGNIFICANCE OF 0.05 ARE SHOWN IN RED. A SIMILAR TABLE FOR THE SUBCUTANEOUS
FAT AND CORONARY ARTERY CALCIFICATIONS ARE INCLUDED IN THE SUPPLEMENTARY MATERIAL DUE TO SPACE LIMITATIONS.

Regression Networks (RN) Regression and Localization Networks (RLN)
Enc(U-Net) Enc(SE-Net) Enc(SD-Net) RL-U-Net RL-SE-Net RL-SD-Net

RN

baseline pc < 0.05 pc < 0.05 pc < 0.05 pc < 0.05 pc < 0.05 pc < 0.05
Enc(U-Net) - pc < 0.05 pc < 0.05 pc < 0.05 pc < 0.05 pc = 0.87
Enc(SE-Net) - - pc < 0.05 pc < 0.05 pc < 0.05 pc < 0.05
Enc(SD-Net) - - - pc < 0.05 pc < 0.05 pc < 0.05

RLN RL-U-Net - - - - pc < 0.05; pd, pdH < 0.05 pc, pd, pdH < 0.05
RL-SE-Net - - - - - pc, pd < 0.05; pdH < 0.05

TABLE IV
STUART-MAXWELL TEST RESULTS COMPARING RISK GROUPS ASSIGNMENTS BETWEEN THE DIFFERENT NETWORK STRUCTURES USED.

Regression Networks (RN) Regression and Localization Networks (RLN)
baseline Enc(U-Net) Enc(SE-Net) RL-U-Net RL-SE-Net

RN
baseline - χ = 51.085

p− value = 2.143e− 10
χ = 16.56

p− value = 0.002353
χ = 49.319

p− value = 5.01e− 10
χ = 27.545

p− value = 1.542e− 05

Enc(U-Net) - - χ = 104.73
p− value < 2.2e− 16

χ = 147.47
p− value < 2.2e− 16

χ = 96.83
p− value < 2.2e− 16

Enc(SE-Net) - - - χ = 31.143
p− value = 2.862e− 06

χ = 38.261
p− value = 9.897e− 08

RLN RL-U-Net - - - - χ = 65.152
p− value = 2.39e− 13

supplementary materials Table I, while between the other two
networks, the p-values are lower than < 0.05.

For the problem of CAC, the two networks analyzed have
very similar ρ, being it of 0.948 for the RL-U-Net and
0.950 for the RL-SE-Net. These two networks did not reach
statistical significance (p = 0.765), as shown in supplementary
material Table II.

B. Structure localization dependency on network structure

Since the masks for the testing data of pectoralis muscle
and subcutaneous fat were available, we can compute the
Dice coefficient and the Hausdorff distance of the localization
masks.

Quantitative analysis is shown in Table II. For the pectoralis
muscle area, we achieve DICE coefficients of 0.853, 0.875, and

0.816 for the RL-U-Net, RL-SE-Net and RL-SD-Net based
proposed networks respectively, all pairs statistically signifi-
cantly different, as shown on Table III. Similarly, for subcuta-
neous fat, the proposed method achieves DICE coefficients of
0.914, 0.908 and 0.817 for the RL-U-Net, RL-SE-Net and the
RL-SD-Net backbones, also statistically significantly different.
It is important to see that while the RL-SD-Net’s regression
performance does not differ much to the alternatives, its dice
coefficient is much lower. This might be due to the small
number of kernels that such networks have on their layers
and suggest that the SD-Net is not a good network choice for
biomarker localization.

Comparing these results with those obtained by the CUNet
proposed in the work of [35], we found that our method gets
similar localization performance for both, Pectoralis Muscle
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Fig. 8. PMA result plots (top) and SFA (bottom) using SE-Net and U-Net respectively as proposed method cores. From left to right: Bland-Altman, correlation
and biomarker localization output where each sample have a colored dot than correspond with the same in the correlation plot. Also, the localization is depicted
using three colors for True positives (Green), False Positives (Yellow) and False Negative (Red). The grey structure shows the candidate mask where biomarker
should be found.

Fig. 9. CAC results using the proposed method over a U-net network. Left to Right: Bland-Altman, correlation plot and risk groups confusion matrix.

Fig. 10. Box plot comparison between baseline regression methods and proposed method.

and Subcutaneous Fat. In terms of mean per-class Dice Score,
the proposed method obtains a 0.895 vs. the 0.916 using
CUNet network.

The mean Hausdorff distance between the proposed method
and the reference standard for PMA is 6.42, 7.05, and 6.89
pixels for the RL-U-Net, RL-SE-Net, and RL-SD-Net respec-
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Fig. 11. CAC biomarker localization obtained by the proposed method using
a U-Net structure as basis. Green regions represent the calcifications founded
in the coronary arteries, note that calcifications in the aorta and bones was
discarded by the network.

tively, all pairs statistically significant with p < 0.05. For SFA,
mean Hausdorff distance is 5.86, 6.02, and 7.15 (p < 0.05
for all pair-wise comparisons). While the RL-U-Net and the
RL-SE-Net perform similarly concerning dice coefficients,
these results show that the RL-U-Net has a lower Hausdorff
distance consistently to the reference standard, generating
better localization masks.

Examples of the localization obtained for six equally spaced
cases for PMA and SFA are shown in Fig. 8. On them, we
show true positives in green, false positives in yellow and
false negatives in red. The localization voxels are overlaid
over the candidates’ mask (in gray). In other words, gray
pixels are potential candidates for the biomarker localization,
and the network learns which pixels belong to the structure
by looking only at the biomarker value. Besides, Fig. 11
shown the inferred voxels from where the Agatston score is
measured, note that the system discards other structures like
bones and calcification plaques in the aorta. As we can see,
the method is robust with respect to the size of the structure
and the variability of the number of candidate voxels, showing
considerable agreement with the reference standard.

C. Risk accuracy in Agatston score computation

The problem of Agatston score computation offers further
opportunities for evaluation. As mentioned in the introduction,
the Agatston score is discretized in risk groups to estimate
the risk of the patient having a cardiovascular event. Such
discretization allows us to compare the performance of the
regressed Agatston score value against the risk-group reference
standard. Such confusion matrix is displayed in Fig. 9. To
quantify the performance of the risk-group categorization, we

Fig. 12. Liver tumor localization comparing the proposed method with the tra-
ditional segmentation method using a U-Net. Green, Red and Yellow regions
means the True Positives, False Negatives and False Positive, respectively.

resort to the κ metric, which is displayed in Table II. We
can see that the proposed regression and localization networks
obtain a κ value of 0.85, for both the RL-U-Net and the RL-
SE-Net. Please compare these numbers with the performance
of the direct regression networks, that obtain the values of
κ of 0.76, 0.73 and 0.75 for the baseline, the Enc(U-Net)
and the Enc(SE-Net) based regressors respectively. Similar
metrics are obtained for the risk-accuracy, where the proposed
method classifies a subject in the correct risk group with 88.5%
accuracy, while the baseline method does so 78% of the times.
An example of the confusion matrix is shown in Fig. 9.

The κ values of the proposed methods are comparable to the
state of the art, getting close to those obtained in the recent
work of [5], where they obtained a κ value of 0.93 and a
risk-accuracy of 0.90 using Chest CT.

Unfortunately, it has not been possible to test CAC on a SD-
Net due to implementation limitations, since the pooling and
unpooling operations with indexes in 3D are not available in
the Keras or the TensorFlow libraries and their implementation
proved to be non-trivial.

While we do not have a reference standard with whom
to test the performance of the CAC localization masks, it
is essential to note that the correlation figures shown in
this section correlate with the quality of the localization
masks. Indeed, as explained in material and methods, the
Agatston score is computed from the localization masks.
When training the simultaneous localization and regression
network, we optimize for the volume of the coronary arteries
lesion. After network convergence, we compute the Agatston
score from the localization mask obtained with our method.
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Fig. 13. Performance progression for different amount of train samples.
CAC is measured in biomarker correlation coefficient. PMA and SFA in both,
biomarker correlation and localization dice coefficient. We tested the system
using 300, 500, 1000, 2000, 4000 and 5000 training samples for a total of
5 times for each problem and number of samples used. Each line represents
the mean, maximum and minimum values and its standard deviation.

Therefore, the high correlation we obtain in the Agatston score
computation is due to the correct localization and delineation
of the lesions in the images. Examples of such localization
masks are displayed in Fig. 4.

D. Liver tumor regression and localization, comparison to a
segmentation network

Fig. 12 shows qualitative results of the application of the
RL-U-Net to the problem of liver tumor size regression and
localization. For three different cases, we show the axial slice
where the tumors are present, the result of the RL-U-Net
and the result of applying a baseline U-Net segmentation.
Such baseline network has the same structure as the backbone
network used for the RL-U-Net. True positives are shown in
green, false positives in red and false negatives in yellow. We
can see comparable qualitative results between both networks.

Quantitatively, on a per-case basis, the RL-U-Net achieved
a Pearson correlation coefficient of 0.989, while the U-Net
achieved a correlation coefficient of 0.951 (p < 0.05). Pearson
correlation coefficients on a per-slice basis are of 0.931 for
RL-U-Net and 0.876 for U-Net (p < 0.05). When perform-
ing regression, the proposed method outperforms the U-Net
segmentation network significantly.

When comparing the Dice coefficients of the localization
network and the reference standard vs. the dice coefficients of
the U-Net, the results favor the segmentation network trained
with the segmentation masks. The average Dice coefficients
per slice for the U-Net are of 0.576 vs. 0.532 of the RL-U-
Net (p < 0.05). When analyzing complete scans, the U-Net
achieved an average score of 0.699 and the RL-U-Net of 0.617.
Probably due to the small number of data points, 18 scans,
the Kruskal-Wallis test did not pass, and therefore the null
hypothesis can not be rejected for this pair of measurements.

E. Number of required training samples

To research how many samples are required to train the
proposed method, we have trained the U-Net based simulta-
neous regression and localization network for the problems

of PMA, SFA and CAC with various numbers of training
samples. We have performed five repeats for each problem
and each number of training samples. As one could expect,
the performance, both in terms of ρ and of Dice coefficient
improves with the number of training samples. However, there
is a sharp increase until approximately 1000 training samples.
The methods plateau after such number, showing a moderate
increase, as shown in Fig. 13. It is important to note that
the variance of the performance decreases with the number of
training samples, as could be expected.

IV. DISCUSSION

The proposed simultaneous biomarker regression and local-
ization network has proven to regress biomarkers better than
the direct regression networks, as shown in Table II, while
simultaneously obtaining the biomarker localization mask.
Indeed, we have re-formulated the problem of biomarker
regression, instead of mapping an image to a real value, we
find the subset of voxels in the image that form the area
or volume of the biomarker, and then adding such voxels to
generate the biomarker to which we perform the regression.

There are two potential reasons why the proposed network
outperforms direct regression networks. The first one is net-
work complexity. The proposed method uses a full encoder-
decoder architecture with skip connections, which enables both
local and global features to be taken into account to compute
the biomarker. However, it is the shift of the paradigm and
the hybrid cost function that enables the use of such network
structures. The second reason could be that we are providing
the network with extra expert knowledge of the problem when
generating the candidates’ masks. While such is a valid reason,
the simplicity with which the candidates’ mask is generated
(a simple threshold followed optionally by morphological
operations) means that it could be easily trained. Indeed, such
an option remains for future research, as well as to analyze
the influence of such candidates’ regions on the whole system.

Other approaches postulate the use of attention maps to
define the regions where the network is focusing on. They
employ a variety of methods ranging from the use of Attention
Gates (AG) to highlight the regions where a network is
focusing [36], computing an aggregated score map directly
from the feature vectors of the intermediate representation at
different network levels [37] or using decovolutional networks
[38] to visualize the regions in an image that contributes
most to the output [5]. The main difference between such
work and ours is that they require either network architecture
modifications after training or their localization masks are low-
resolution, requiring some post-processing methods to obtain
more accurate biomarker localization. In contrast, our method
does not need any post-processing modification to get an
original full resolution localization map.

We have shown how the method generalizes with respect
to the backbone network used, as demonstrated by the ex-
periments using the U-Net, the SE-Net and the SD-Net.
Even though these networks share the same encoder-decoder
structure, we hypothesize that our training methodology could
be used with other segmentation networks, as long as they
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generate an image of the same resolution as the input. We have
also shown the generalization of the proposed method with
respect to the segmentation problem, using the 2D computation
of pectoralis muscle area, subcutaneous fat area, and the 3D
computation of the Agatston score as the problems of choice.
Clearly, the performance changes with the complexity of the
problem, but so does the performance of regular regression
networks.

Localization results obtained must be analyzed more deeply.
Dice coefficients show a high agreement with the reference
standard, but we must be aware that these references have a
subjective component, which may mean that both reference
standard and our method outputs, represent a valid structure
location. If we compare a typical segmentation network with
our proposed method version, the latter one grants a new
freedom dimension in the way we are not limited the network
to learn based on a subjective delimited reference segmentation
mask, but also training with only the biomarker value, giving
the network a larger margin to infer the localization of the
structure within the known candidate regions.

Focusing on the biomarker regression of the Agatston score,
our method produces an Inter Class Correlation coefficient
(ICC) of 0.95 using non ECG-Gated chest CT. Such coefficient
is close to state-of-the-art methods. For example, the work of
[5] obtain an ICC of 0.97 in Agatston score direct regression,
close to the 0.96 obtained by [39], both using ECG-Gated
cardiac CT, which are often images of higher quality. One
may claim that, in comparison with other works, we have
compensated image quality by the use of a much larger dataset.
The experiments in Fig. 13 related to the number of training
samples allow us to conclude that with 1500 training scans,
the system is able to find a suitable solution, even though
the system variability remains fairly high. Such number, 1500
training samples, is not a large difference in comparison of
the 1239 Cardiac+Chest CT or the 1013 Cardiac CT used
respectively in the works cited above.

To further show the generality of the proposed method,
we have applied it to the regression of liver tumor area and
compared it against a reference u-net segmentation network.
The proposed method achieved a better correlation coeffi-
cient to the reference standard than the segmentation method.
However, the Dice coefficient between the segmentation u-net
and the proposed network favored the segmentation network.
Such is of little surprise, since the segmentation network uses
segmentation masks for training, while the proposed method
does not. Further, the Dice coefficient is not linear with respect
to the number of pixels or voxels that are misclassified;
it all depends on the number of pixels that the reference
segmentation has. As such, an error if 1 pixel can generate a
dice score of 0 if the reference mask has a 1-pixel size, or have
almost no influence if the reference mask has 100 pixels. This
property leads to the optimization of the segmentation network
towards small areas. In contrast, when performing regression
and using the L2 norm for optimization, one misclassified
pixel has the same influence on whether the reference label
is of 1 pixel or 100 pixels. This property leads to better
performance on regression of the proposed method while
having a lower performance on segmentation matrices.

A. Limitations

The main limitation is that the proposed method can only
be applied to biomarkers that can be measured as an area, a
volume, or that can be computed from a localization mask by
applying some transformation. While many biomarkers fall in
this category, regression networks are not only limited to such
types of biomarkers and could infer, for instance, spirometry
data from the images.

A second limitation is that the regression values come from
manual annotations, and to obtain such values, a segmenta-
tion should have been made. Therefore, why not using the
segmentation in the first place? We were inspired by the CAC
dataset, a large dataset generated for a clinical study to which
no segmentation was saved. We believe this dataset is not
unique to its kind, and that similar datasets can be extracted
from clinical practice. As an example, the RECIST criteria for
the evaluation of tumor progression.

V. CONCLUSION

We have presented a method that not only improves the
regression performance in comparison with the normal re-
gression networks, but also returns an image-based biomarker
localization map as a direct by-product of the regression
computation without applying any post-processing task like
switching layers or attention methods. The proposed method
does not need any reference segmentation for training. We
have shown that the proposed method can use any encoder-
decoder segmentation network as backbone and that it is appli-
cable to different 2D and 3D regression problems, achieving
state-of-the-art performance.
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José Estépar, “On the relevance of the loss function in the agatston score
regression from non-ecg gated ct scans,” in Image Analysis for Moving
Organ, Breast, and Thoracic Images. Cham: Springer International
Publishing, 2018, pp. 326–334.

[33] E. J. Williams, “The Comparison of Regression Variables,” Journal of
the Royal Statistical Society: Series B (Methodological), vol. 21, no. 2,
pp. 396–399, 1959.

[34] A. E. Maxwell, “Comparing the classification of subjects by two
independent judges.” The British journal of psychiatry : the journal
of mental science, vol. 116, no. 535, pp. 651–655, 1970.
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