109 research outputs found

    Electronic structure of two interacting phosphorus δ-doped layers in silicon

    Get PDF
    Density functional theory is used to quantify the interaction of a pair of 1/4-monolayer phosphorus δ-doped layers in silicon. We investigate changes in the electronic structure as the distance between the two δ-doped layers is altered and identify the onset of interactions between the transverse and longitudinal bands. The calculations show that the valley splitting is insensitive to the separation distance, while the interlayer band splittings are insensitive to the representation used to describe the dopant disorder. These observations are exploited in a hybrid model which enables the calculation of accurate splittings of realistically disordered systems at tractable computational cost

    Electronic structure models of phosphorus 0-doped silicon

    Get PDF
    We report a density-functional theory treatment of phosphorus 0-doped silicon. Using large asymmetric unit cells with up to 800 atoms, we obtain first-principles doping potentials, band energies, and donor-electron distributions. The explicit and nonempirical description of both valence and donor electrons improves upon previous models of this system. The effects of overlapping 0-doping potentials in smaller systems are adequately captured using a uniform band alignment shift

    Dissociation of CH₃–O as a Driving Force for Methoxyacetophenone Adsorption on Si(001)

    Get PDF
    The coverage-dependent behavior of p-methoxyacetophenone on the clean Si(001) surface was followed using X-ray photoelectron spectroscopy and supporting density functional theory calculations. Unlike other multifunctional organic molecules, this compound exhibits a high selectivity of adsorbate species formation by forming only two distinct adsorbate structures at low coverage, with a third configuration forming at high coverages. At low coverage, surface chemisorption is driven by methoxy group dissociation. However, at high coverage, the surface footprint required for this process is no longer available, leading to the formation of less thermodynamically stable adsorbates that are datively bonded to the surface with a smaller footprint. This coverage-dependent but well-defined behavior is promising in designing functional organic–inorganic interfaces on silicon

    Atomic-scale structure of the SrTiO3(001)-c(6x2) reconstruction: Experiments and first-principles calculations

    Get PDF
    The c(6x2) is a reconstruction of the SrTiO3(001) surface that is formed between 1050-1100oC in oxidizing annealing conditions. This work proposes a model for the atomic structure for the c(6x2) obtained through a combination of results from transmission electron diffraction, surface x-ray diffraction, direct methods analysis, computational combinational screening, and density functional theory. As it is formed at high temperatures, the surface is complex and can be described as a short-range ordered phase featuring microscopic domains composed of four main structural motifs. Additionally, non-periodic TiO2 units are present on the surface. Simulated scanning tunneling microscopy images based on the electronic structure calculations are consistent with experimental images

    Adsorption and Dissociation of a Bicyclic Tertiary Diamine, Triethylenediamine, on a Si(100)-2 x 1 Surface

    Get PDF
    This study investigates the adsorption and thermal transformations of a bicyclic tertiary amine, triethylenediamine, on the clean Si(100)-2 × 1 surface. Below room temperature, triethylenediamine adsorption leads to the formation of a strong dative bond between one of the nitrogen atoms of this compound and the silicon surface. In contrast to previously studied amines, the datively adsorbed triethylenediamine features a second tertiary amine entity that is not bonded to the surface, with a lone pair orbital that is directed away from the surface and is available for further reactions. The thermal chemistry and electronic properties of triethylenediamine on silicon are studied using thermal desorption spectroscopy, infrared spectroscopy, and X-ray photoelectron spectroscopy. Near-edge X-ray absorption fine structure measurements are utilized to clarify the geometry of the adsorbates at room temperature. Density functional theory calculations are used to describe the binding geometry and electronic properties of the resulting surface species and the likely reaction paths at elevated temperatures

    Orientation and stability of a bi-functional aromatic organic molecular adsorbate on silicon

    Get PDF
    In this work we combine scanning tunneling microscopy, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission spectroscopy and density functional theory to resolve a long-standing confusion regarding the adsorption behaviour of benzonitrile on Si(001) at room temperature. We find that a trough-bridging structure is sufficient to explain adsorption at low coverages. At higher coverages when steric hindrance prevents the phenyl ring lying flat on the surface, the 2+2 cycloaddition structure dominates

    Electronic structure of phosphorus and arsenic d-doped germanium

    Get PDF
    Density functional theory in the LDA+U approximation is used to calculate the electronic structure ofgermanium d doped with phosphorus and arsenic. We characterize the principal band minima of the twodimensional electron gas created by d doping and their dependence on the dopant concentration. Populated first at low concentrations is a set of band minima at the perpendicular projection of the bulk conduction band minima at L into the (kx ,ky ) plane. At higher concentrations, band minima at and become involved. Valley splittings and effective masses are computed using an explicit-atom approach, taking into account the effects of disorder in the arrangement of dopant atoms in the d plane

    Reaction paths of phosphine dissociation on silicon (001)

    Get PDF
    Using density functional theory and guided by extensive scanning tunneling microscopy (STM) image data, we formulate a detailed mechanism for the dissociation of phosphine (PH3) molecules on the Si(001) surface at room temperature. We distinguish between a main sequence of dissociation that involves PH2+H, PH+2H, and P+3H as observable intermediates, and a secondary sequence that gives rise to PH+H, P+2H, and isolated phosphorus adatoms. The latter sequence arises because PH2 fragments are surprisingly mobile on Si(001) and can diffuse away from the third hydrogen atom that makes up the PH3 stoichiometry. Our calculated activation energies describe the competition between diffusion and dissociation pathways and hence provide a comprehensive model for the numerous adsorbate species observed in STM experiments
    • …
    corecore