Dissociation of CH₃–O as a Driving Force for Methoxyacetophenone Adsorption on Si(001)

Abstract

The coverage-dependent behavior of p-methoxyacetophenone on the clean Si(001) surface was followed using X-ray photoelectron spectroscopy and supporting density functional theory calculations. Unlike other multifunctional organic molecules, this compound exhibits a high selectivity of adsorbate species formation by forming only two distinct adsorbate structures at low coverage, with a third configuration forming at high coverages. At low coverage, surface chemisorption is driven by methoxy group dissociation. However, at high coverage, the surface footprint required for this process is no longer available, leading to the formation of less thermodynamically stable adsorbates that are datively bonded to the surface with a smaller footprint. This coverage-dependent but well-defined behavior is promising in designing functional organic–inorganic interfaces on silicon

    Similar works