Electronic structure of phosphorus and arsenic /-doped germanium

D. J. Carter,"2 O. Warschkow,? J. D. Gale,"2? G. Scappucci,* W. M. Klesse,* G.
Capellini,> A. L. Rohl,»? M. Y. Simmons,* D. R. McKenzie,> and N. A. Marks% 2

!Dept. of Chemistry, Curtin University, GPO Box U1987, Perth WA 6845, Australia
2 Nanochemistry Research Institute, Curtin University, GPO Box U1987, Perth WA 6845, Australia
I Centre for Quantum Computation and Communication Technology,
School of Physics, The University of Sydney, Sydney NSW 2006, Australia
“Centre for Quantum Computation and Communication Technology,
School of Physics, The University of New South Wales, Sydney NSW 2052, Australia
° Dipartimento di Scienze, Universita degli studi Roma Tre, Viale Marconi 446, 1-00146 Roma, Italy
S Discipline of Physics € Astronomy, Curtin University, GPO Box U1987, Perth WA 6845, Australia
(Dated: October 7, 2013)

Density functional theory in the LDA+U approximation is used to calculate the electronic struc-
ture of germanium é-doped with phosphorus and arsenic. We characterize the principal band minima
of the two-dimensional electron gas created by d-doping and their dependence on the dopant con-
centration. Populated first at low concentrations is a set of band minima at the perpendicular
projection of the bulk conduction band minima at L into the (kg,ky,) plane. At higher concentra-
tions band minima at I' and A become involved. Valley splittings and effective masses are computed
using an explicit-atom approach, taking into account the effects of disorder in the arrangement of

dopant atoms in the § plane.

PACS numbers: 61.72.uf, 71.20.Mq, 71.20.Nr, 71.55.Cn

I. INTRODUCTION

Since its first demonstration in 2009 (Ref. 1), phos-
phorus in germanium (Ge:P) 0-doping is rapidly emerg-
ing as a viable technique to achieve high n-type carrier
concentrations in germanium. These concentrations are
a key requirement for a variety of applications ranging
from source/drain contacts in high mobility nanoscale
transistors? to CMOS integrated Si-compatible lasers.> >
Moreover, the highly confined two-dimensional electron
gas (2DEG) resulting from the P donor sheet can be pat-
terned with atomic-scale precision using scanning probe
lithography and phosphine (PHj) gas as dopant source
to create planar Ge:P nanodevices, such as atomic-scale
wires and tunnel gaps.® Further, multiple §-layers can be
vertically stacked in the Ge crystal, preserving their indi-
viduality from a structural and electrical point of view,”?
and opening the possibility of three-dimensional epitaxial
circuits comprising vertically stacked 2DEGs and atomic-
scale Ge:P devices. Arsenic d-layers in germanium have
not yet been produced by these lithography techniques,
but there is no in-principle reason against their fabrica-
tion. Indeed, from an ionic radius perspective, arsenic is
a more natural fit for germanium. The deposition chem-
istry of PH3 and AsHz on Si(001) is reported!® to share
many similarities, and hence it is reasonable to surmise
that Ge:P fabrication protocols are transferable to Ge:As
nanodevice fabrication.

With experimental progress advancing at a rapid pace,
a detailed theoretical understanding of the electronic
structure of -doped Ge is warranted. Few studies have
been performed in this area, with the closest studies con-
cerned with germanium nanofilms!! and Ge/SiGe quan-
tum wells.'>14 In addition, Hwang and Das Sarma'®

have recently reported transport properties of §-doped
silicon and germanium calculated using Boltzmann trans-
port theory. In this work we present a detailed density
functional theory (DFT) study of (001)-oriented d-doped
Ge at phosphorus and arsenic doping concentrations be-
tween 1/12 and 1/2 monolayer. Our results provide in-
sight into aspects of the electronic band structure such
as band folding, valley splitting, and effective masses as
a function of concentration. We examine the effect of
dopant disorder on the electronic structure and quantify
the differences between phosphorus and arsenic. Valley
splittings and effective masses are key parameters for the
design of epitaxial circuits assembled with germanium-
based 2DEGs and/or devices with confinement in other
dimensions, such as quantum wires, tunnel junctions, or
quantum dots.

This paper is organized as follows. The basic computa-
tional methodology and its validation against the known
band structure of bulk germanium is outlined in Section
II. In Section III we systematically work through the
various technical challenges of performing DFT calcula-
tions on Ge:P/As-0 in order to obtain meaningful phys-
ical properties for this system. We discuss in turn: the
projection of the bulk band structure into the J-plane
(Section IITA), the 2DEG band energies and valley split-
tings of d-doped Ge as obtained using an approximate
mixed-atom model (Section IIIB), the folding of bands
when larger in-plane unit cells are used (Section IIIC),
which is preparatory to the discussion of explicit-dopant
models with ordered (Section IIID) and quasi-disordered
(Sections IITE and IITF) arrangements of dopant atoms
in the J-plane.



II. METHODOLOGY

Density functional theory (DFT) calculations on §-
doped germanium are conducted by adapting the gen-
eral approach previously applied to Si:P by ourselves!6 18
and others'® 2! to the specific requirements of Ge:P
and Ge:As. All calculations are performed using the
SIESTA software.?? The electronic wavefunctions are ex-
panded in a basis-set of atom-centered numerical atomic
orbitals of double-zeta-plus-polarization (DZP) quality.
All basis functions are radially confined such that or-
bital energies shift by 0.02 Ry (see Ref. 22 for de-
tails) and a split-norm ratio of 0.15 is used. The ef-
fective potentials due to the nucleus and core electrons
are represented using norm-conserving Troullier-Martins
pseudopotentials?® and electron exchange-correlation is
treated in the local-density approximation (LDA). An
auxiliary basis consisting of a real-space mesh with a
kinetic-energy cutoff of 300 Ry is used to represent the
electron density. Convergence is assisted by the use of
Methfessel-Paxton smearing (Ref. 24; polynomial of or-
der 5, T=298 K) With these settings and a 20x20x20
Monkhorst-Pack?® k-point grid, the germanium bulk
lattice constant, a, was calculated to be 5.620 A, in
good agreement with the experimental value of 5.66 A
(Ref. 26). This calculated lattice constant is used in all
subsequent calculations. All internal atomic positions
were held at bulk values.

To address the problem of a vanishing band gap for
bulk germanium within local DFT (e.g. Refs. 27-30) we
utilize the LDA-+U formalism as described by Dudarev et
al.3! in our band structure calculations. A single empir-
ical correction of U—.J=2.6 eV is applied to all valence p
orbitals. Figure 1 shows the calculated band structure of
bulk germanium in a face-centered-cubic (fcc) cell with
several energy differences labelled. The calculated band
gap (I'Lg.) of 0.75 eV matches the experimental value
of 0.74 eV (Ref. 32) by construction through the choice of
U—J. The band energy differences from I'-T' (1.02 eV)
and I'-X (1.20 eV) compare well to experiment?7-32:33
where the corresponding (room-temperature) values are
0.90-1.0 and 1.3 eV, respectively. One subtle discrep-
ancy is that the band minimum at A is calculated to be
slightly more stable than that at I', whereas higher levels
of theory appear to predict the reverse.3:34

The textbook ellipsoidal shape of the conduction band
minimum at L. is evident in the low curvature of the
band along L¢..—I" and the much higher curvature in the
almost perpendicular Lg..—Xg.. direction. Each of the
ellipsoidal valleys is oriented with its principal (longitu-
dinal) axis along I'-L¢., and is cut in half by a hexagon-
shaped boundary plane of the fcc lattice Brillouin zone.
Effective masses of the ellipsoidal valleys and several
other extrema were computed by fitting parabolic func-
tions to the band structure near the minima. By fitting to
parabolic functions, longitudinal and transverse effective
masses were computed to be 1.61 and 0.10 m,, respec-
tively, which compare well to experimental values of 1.64
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FIG. 1: Calculated band structure of germanium for the 2-
atom fcc unit cell using the LDA+U approach as detailed in
the text. Xgce, Lfce, and I' correspond to reciprocal lattice
points (27/a,0,0), (7/a,m/a,m/a), and (0,0,0), respectively.
The conduction band minimum (CBM) at L and the va-
lence band maximum (VBM) at I' are indicated together with
several band energy differences.

and 0.08 m, (Ref. 35).

As in our previous work on silicon we use two
distinct approaches to represent the dopant distribution
in the ¢ layer: mized-atom doping based on the virtual
crystal approximation®®37 and explicit doping using dis-
crete distributions of phosphorus, arsenic, and germa-
nium atoms. Explicit doping is the more realistic and
hence more accurate representation, however its use is as-
sociated with a number of technical complexities that we
will address below. In contrast, the approximate mixed-
atom approach is intuitive and accessible because a high
degree of symmetry is maintained. This is achieved by
describing the atoms in the dopant plane as a fractional
average between dopant and bulk atoms, which means
that any dopant concentration can be represented us-
ing the smallest possible in-plane repeat. Although 6-
doping experiments in germanium have to-date only been
performed using phosphorus, arsenic is the more natural
choice as noted above. Accordingly, the mixed-atom cal-
culations reported in this work employed hybrid atoms
intermediate between Ge and As. We also performed a
series of tests using mixed Ge/P hybrid atoms and the
band structures were virtually indistguishable from those
involving As. Residual quantitative differences are very
small indeed, and entirely secondary to the approxima-
tions that are intrinsic to the mixed-atom approach.

17,18

III. RESULTS

A. Band structure projection into the é-plane:
Bulk

Before we can discuss the effects of doping, we must
first understand how the three-dimensional band charac-
teristics of bulk germanium [fcc unit cell; Fig. 1] trans-
late into the two-dimensional band geometry that applies
to d-doping. This requires two sequential lattice trans-
formations: from fcc to primitive tetragonal and from
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FIG. 2: (a) Band structure of bulk germanium in a four-atom tetragonal unit cell; (b) Schematic view of the Brillouin zone
of the tetragonal unit cell and the eight ellipsoidal valleys; (c) Plane view illustrating the intersecting ellipsoidal minima at
Licc; (d) Projection of the Lecc-point conduction band minima into the (ks,ky)-plane in an elongated supercell appropriate for
d-doping; (e) Plane-projected band structure for undoped germanium using a 192L supercell with a 1-atom in-plane repeat;
(f) Band structure of §-doped germanium with an arsenic dopant concentration of 1/4 ML computed using a mixed-atom
approach and the same supercell as in (e). Calculations used a 16x16x12 k-point grid in (a), and a 16x16x1 grid in (e,f). The
Fermi level is indicated by dashed lines. For orientation, the projected bulk band structure is shown in (e,f) as a gray-shaded

background.

primitive tetragonal to a tetragonal supercell. We dis-
cuss these two transformations in turn.

fec—primitive tetragonal. The orientation of the ¢
plane in experimental Ge:P-d-samples is typically (001)
and hence we require a unit cell with two lattice vec-
tors within the (001) plane. The smallest bulk unit
which satisfies this condition is a four-atom tetragonal
unit cell with a l-atom in-plane repeat. It is instruc-
tive to consider first the band structure of bulk germa-
nium in this primitive tetragonal representation which
is shown in Fig. 2(a). In comparison to the fcc unit cell
(Fig. 1), additional bands arise due to Brillouin zone fold-
ing. These additional bands can be understood by con-
sidering the tetragonal Brillouin zone shown in Fig. 2(b),
and the position and orientation of the ellipsoidal con-
duction band minima. Note that in this unit cell the L.
points above and below the k; .k, plane become equiva-
lent (being separated by a reciprocal lattice vector in k).
As illustrated by the plane cut in Fig. 2(c), this causes
a pair of ellipsoidal valleys to become co-located at the
same point but with their longitudinal axes oriented at
an angle of 70.5°. These two orientations are evident
in Fig. 2(a) through the appearance of a high-curvature
branch around the L. band minimum in addition to
the low-curvature branch seen in the fcc band structure
(Fig. 1).

primitive tetragonal—tetragonal supercell. In order to
separate the d-atomic plane from its periodic image we
extend the primitive tetragonal cell along z to create a
highly elongated supercell. The corresponding reciprocal
lattice is compressed in k.. In the limit of an infinite su-
percell, the band structure is completely projected into

the (ky.ky)-plane. Figure 2(d) illustrates how the con-
duction band minima at L¢.. (£7/a,+m/a,+£7/a) project
into the (k;.k,)-plane to give four doubly degenerate
minima at (+m/a,£7/a,0). For convenience, we label
these four minima L’. Through geometric considerations
it can be seen that each projected minimum is the center
of an ellipse with a longitudinal axis that is shortened
by a factor of 1/2/3=0.816, whereas the transverse axis
remains the same. The situation is more straightforward
for the six A band minima which are projected as in Si:P
d-doping (see e.g. Ref. 18), i.e. the two out-of-plane min-
ima are projected to I' and the in-plane minima are left
unchanged.

Figure 2(e) displays the band structure of undoped ger-
manium in this elongated unit cell (a 1x1x48 supercell
of the tetragonal unit cell implying a repeat of 192 atomic
layers in z, which we denote 192L). The folding becomes
apparent in two ways; the conduction band minimum at
Licc is mapped to L'=(£7/a,£7/a,0) as described above,
and a much larger number of bands appear. The gray
shading in the background represents the continuum of
bands that would arise for a supercell infinitely long in z.
This shading is included in some of the subsequent §-layer
band structures as a reference to the bulk continuum.
The curvature of this band continuum at L’ demonstrates
the elliptical character of the projected conduction band
minimum: the steeply curving branch from L’ to Xy has
an effective mass of 0.094 m., a near match to the cal-
culated transverse value of 0.10 m, for bulk germanium.
In the L' to T direction the effective mass is 1.073 m,,
precisely two-thirds of the calculated bulk longitudinal
value, exactly as expected since the effective mass varies



as the square of the geometric foreshortening.

B. J§-doping in the mixed-atom representation

Having characterized the bulk band structure in
the two-dimensional projection, we can now introduce
dopant atoms into the d-plane. We start off here with
the more accessible mixed-atom approach to doping. The
calculated band structure for a mixed-atom doping con-
centration of 1/4 ML is shown in Fig. 2(f). The ionized
dopant cores in the d-plane create an attractive potential
that pulls several conduction bands into the energy gap.
The additional electrons associated with the dopants oc-
cupy these bands, which raises the Fermi level from the
mid-gap and creates a 2DEG whose electronic properties
are determined by these bands. At the L’ point there
are two band minima that we label 1L’ and 2L’. The en-
ergy difference of 102 meV between these two minima is
due to the confining dopant potential, which couples to-
gether the two degenerate valleys in the bulk, and causes
them to split apart. At the I' point there are also two
band minima, labelled 1" and 2I" which are valley split
by a tiny amount (3 meV). Although the 1A minima are
stabilized by the doping potential, they are not pulled
sufficiently far into the gap to be populated.

Similar calculations were performed for mixed-atom
doping concentrations of 1/12, 1/8 and 1/2 ML. Quan-
titative details of the band structures are summarized
in Table I. The data shows how the band minima are
progressively lowered in energy (i.e. stabilized) with in-
creasing dopant concentration, reflecting the increasing
strength of the doping potential. The increase of the
L’ valley splitting with doping points to the potential
also becoming more confining. Figure 3 further visual-
izes these trends by plotting the band minima and the
Fermi level, Er, as a function of doping concentration.
Interpolated crossings between the band energies and Ep
allow us to estimate the concentrations at which succes-

TABLE I: Calculated valley splitting, band minima and Fermi
level (all in meV) as a function of dopant concentration using
the mixed-atom approach and a 192L supercell. Valley split-
tings (VS) are calculated as the difference between the first
two band minima at the L’ and I positions. Band minima are
expressed relative to the bulk conduction band minimum and
are reported at the L' and I" points, and along the A axis.
The same reference is used for the Fermi level.

1/12ML  1/8 ML  1/4ML  1/2 ML
L —110 —165 —246 —459
r +29 —41 —124 —310
A +103 +60 +25 —64
VS (L) 23 42 102 256
VS (T) 2 2 3 2
Er —4 -9 —13 —29
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FIG. 3: Band minima and Fermi level as a function of doping
concentration using the mixed-atom approach with a 192L
supercell. Vertical dashed lines denote the critical dopant
concentrations at which successive band minima become pop-
ulated.

sive band minima become occupied. Below 0.1 ML only
the L’ minima are lower than the Fermi level and hence
this is the only populated region of the band structure.
Above 0.1 ML, the bands minima around I" become in-
volved. A relatively high 0.4 ML are required to populate
the band minima at A.

C. Larger in-plane repeats and Brillouin zone
folding

Up to this point, our band analysis of d-doped Ge
has relied on the approximate mixed-atom approach to
represent the dopants in the d-plane. This approach is
convenient in that it preserves the symmetry of bulk-
germanium projected into the (k;.k,) planes. The fact
that we can represent this system using the smallest pos-
sible (i.e. primitive) in-plane repeat unit of one atom
is a practical consequence of this symmetry. However,
this symmetry no longer applies when we switch to the
more accurate explicit-dopant model and the larger in-
plane repeats required for this approach. In this section,
we describe how the mixed-atom band structures carry
over into larger in-plane repeat units. This prepares the
ground for the explicit-dopant model discussed in the fol-
lowing sections.

A larger in-plane repeat in real space corresponds to
a smaller Brillouin zone in reciprocal space into which a
larger number of bands and valleys are folded. Figure
4 shows the 1/4 ML mixed-atom band structure when
moving from a l-atom in-plane repeat [Fig. 4(a)] to a
2-atom repeat [Fig. 4(b)], and from there to an 8-atom
repeat [Fig. 4(c)]. Shown with each band structure are
schematic sketches that indicate how the L/, T' and A
band minima become repositioned as the Brillouin zone
shrinks in size.

The 1-atom band structure shown in Fig. 4(a) is es-



sentially the same as that in Fig. 2(f) except that it
was obtained using a more compact 80L model. This
out-of-plane shortening of the supercell is necessary in
order to render the larger in-plane repeats computation-
ally feasible. Valley splittings of 100 and 3 meV at L'
and I, respectively, compare favourably with those ob-
tained for the larger 192L model (102 and 3 meV), sug-
gesting that this shortened model is suitable for the pur-
pose of calculating valley splittings. The band structure
for the 2-atom repeat [Fig. 4(b)] differs from the 1-atom
repeat in two distinct aspects: (i) the 1A band is folded
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FIG. 4: Tlustration of band folding in 1/4 ML ¢ layers when
moving to larger in-plane repeats. (a) Band structure and
schematic illustration of the two-dimensional Brillouin zone
for a l-atom repeat unit, with the position of the L', T, and
A band minima indicated. (b) Same as (a) for a 2-atom re-
peat. (c) Same as (b) for a 8-atom repeat. All calculations
performed using the mixed-atom approach with an 80L su-
percell.

closer to the T' point from 0.80x2w/a along <100> to
0.20x 27 /a, and (ii) new high curvature branches appear
at the 1L//2L’ band minima. These new branches are
associated with a doubling of the elliptic band valleys
at the L' point due to band folding. As indicated in
the Brillouin zone schematic, the pair of valleys are ori-
ented at a 90° angle, such that both the longitudinal and
transverse directions appear on the L'-T" axis as low- and
high-curvature branches around L', respectively. Moving
from a 2-atom repeat to an 8-atom repeat [Fig. 4(c)] in-
troduces further band folding associated with a reduction
of the Brillouin zone to a quarter in size. In an 8-atom
repeat, the valleys at L’ are mapped to the I' point, while
the positions of the A minima are unaffected. We note
that the same band positions apply to 4- and 16-atoms
repeats (not shown here).

There are two key points to take away from this anal-
ysis: (1) Reciprocal lattice positions that are distinct for
a primitive l-atom repeat can become coincident for a
larger repeat. Correspondingly, band valleys that are
separate and apart can become overlapping. We saw an
example of this earlier [¢f. Fig. 2(b,c)] when a switch
from a fcc bulk cell to primitive tetragonal caused two
three-dimensional ellipsoidal valleys to overlap at a 70.5°
angle. The same occurs here for §-doped Ge and in-plane
repeats of four atoms and larger; two sets of 1L/ /2L el-
liptical valleys oriented at a 90° angle become coincident
at the I-point, joining the 1T'/2T" band minima already
there. One of the challenges in the following discussion
will be to separate these bands from one another. (2)
Band folding alone does not cause any coincident bands
to interact; this requires an interaction (here: a doping
potential) that breaks the symmetry of the primitive cell.
The mixed-atom approach preserves symmetry because
all atoms in the d-plane remain equivalent, and hence
properties such as band energies and valley splittings are
the same, irrespective of the size of the in-plane repeat
used. In contrast, the explicit-doping approach will typ-
ically be symmetry-breaking. This introduces new inter-
actions and band splittings in addition to those seen in
the mixed-atom model. The challenge will be to identify
the valley splitting amongst these other interactions.

D. Explicit-dopants: Ordered

In the explicit doping approach, a discrete distribution
of germanium, arsenic and phosphorus atoms is used to
achieve a more realistic representation of J-doping in ger-
manium. Explicit doping requires us to not only define
the number of dopant atoms in the § atomic plane, but
also their placement relative to one another. The dopant
arrangements considered in this section are maximally
ordered, in that they are described by a primitive dopant
repeat pattern that contains only a single dopant atom.
This is to say that all dopant atoms are symmetry re-
lated to one another by the shortest possible translational
repeat vectors. Taking the example of 1/4 ML doping,
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circles are used to indicate corresponding points in the band
structure. All calculations employ an 80L supercell with a
6x6x1 k-point grid.
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the maximally ordered dopant arrangement contains four
atoms, three Ge and one As or P, in a square-shaped 4-
atom repeat pattern.

The calculated band structure for 1/4 ML §-layer using
mixed-atom doping, explicit As doping, and explicit P
doping are shown in Fig. 5(a-c). These plots focus on
the immediate vicinity of the I'-point in order to better
bring out the folded 1L//2L" and T' band minima. The
specific dopant placement pattern used is illustrated by
the schematic above the band structure, where we have
indicated the primitive dopant repeat pattern (l-atom
for mixed, 4-atom ordered for explicit) using background
gray shading. Note that the computational supercell used
in these calculations has an 8-atom in-plane repeat unit
which is indicated by dashed lines in the schematics. This
larger unit cell will later facilitate comparisons with other
(more disordered) dopant arrangements.

Looking first at the mixed-atom calculation [Fig. 5(a)]
we can attribute various L/ and T' minima by their fold-
ing in Fig. 4. For clarity, we have highlighted the 1L’ and
2L/ bands (both low and high curvature branches) using
blue and red colored lines, respectively. The 1I" and 2T’
bands are shown using black lines, and other bands are
shaded gray. Shown underneath the mixed band struc-
ture is a transverse cut in the k; k, plane [Fig. 5(d)] at
an energy of 25 meV above the 1L/ band minimum. This
type of diagram neatly brings out the shape of the two
degenerate elliptical valleys crossing at an angle of 90° at
T [¢f. Fig. 4(c)].

The band structure of the arsenic explicit-ordered case
[Fig. 5(b)] is at first glance quite different from that of the
mixed case [Fig. 5(a)]. We recognize the 2L’ band (red
lines) from the mixed case which is largely preserved in
the explicit case with a low and high curvature branch
along <110> that is indicative of a degenerate pair of
elliptical valleys crossing at an angle. We can also spot
the pair of 1I'/2T" bands (black lines) by their curvature.
These bands are shifted up in energy by about 0.1 eV
relative to the mixed-atom case, and the valley splitting
is notably increased from 3 to 25 meV. In contrast, the
11/ bands (blue lines) exhibit hardly any resemblance to
the mixed case, having split from a degenerate pair to be-
come two separate bands. Closer inspection shows that
the curvature of these bands along <100> is similar to
that in the mixed case, and along <110> it is intermedi-
ate between that of the high- and low-curvature branch of
the mixed case. Collectively, these observations point to-
wards a strong coupling between the pair of 1L’ elliptical
valleys that results in their splitting apart. This hypoth-
esis is further supported by the k;,k, cut [Fig. 5(e); again
at 25 meV above the band minimum|: the valley shape
is now very nearly isotropic with only a small amount
of bulging along the <110> directions, indicative of an
equal-sized combination of the two elliptical valleys.

We will show in the next section that the interaction
that couples the two degenerate 1L/ valleys is due to the
high degree of order in the dopant arrangement. This
interaction is in addition to the genuine valley splitting
VSi, that is due to two-dimensional confinement, and
hence we need to separate one from the other. This is
done here by simple averaging as is indicated by double
arrows in Fig. 5(b), i.e. we calculate VS, as the average
difference between the two 1L’ band minima and 2L/.

TABLE II: Valley splittings (VS, in meV) of the L' and T'
band minima calculated for the 1/4 ML explicit-ordered and
mixed-atom representations (c¢f. Fig. 5). Also included are
longitudinal and transverse effective masses (in units of m.)
for the 11" and 2L bands.

VS, VSr mi, my;,
1-at. Mixed 100 3 1.09/0.10  0.92/0.10
4-at. Ordered As 193 25 0.20/0.19 0.82/0.10
4-at. Ordered P 193 34 0.21/0.19 0.76/0.10




From this we derive an L’ valley splitting of 193 meV,
which is almost twice the value obtained using the mixed-
atom approach. As noted previously in the context of
Si:P §-doping!™!® the mixed-atom approach, for all its
intuitive utility, tends to underestimate valley splittings.

Figure 5(c) shows the band structure for the same
1/4 ML explicit-ordered dopant pattern, except that
phosphorus is now used as the dopant. Comparison with
Fig. 5(b) reveals that the band structures of As and P
are in qualitative terms almost identical. The L’ val-
ley splitting remains unchanged at 193 meV. The I val-
ley splitting increases from 25 to 34 meV. Selected band
structure properties for 1/4 ML mixed-atom doping, and
the two explicit-ordered doping models are summarized
in Table II. With the explicit-atom approach the curva-
ture of the heavy 1L’ branch is significantly decreased,
but as we show below, this difference is a consequence
of ordering in the dopant pattern rather than a reflec-
tion of the choice of pseudopotential employed. We also
see that the effective masses in the two explicit-ordered
structures are extremely close, confirming that arsenic
and phosphorus exhibit similar behaviour.

E. Explicit dopants: effect of disorder

Experimental evidence does not indicate that dopants
are ordered in the J-plane,®? and hence the maximally-
ordered arrangement discussed in the previous section
may not be representative of a real sample. In DFT cal-
culations, we can emulate some of the effects of dopant
disorder by using repeat patterns that are larger, so that
they contain more than just a single dopant atom. Hav-
ing these additional dopant atoms affords more flexibility
to break the high degree of translational symmetry of an
ordered pattern. In this section we will specifically fo-
cus on a simple 8-atom pattern containing two arsenic
or phosphorus atoms to create a minimalist model of
1/4 ML Ge:P/As-§ with dopant disorder.

Band structures for this 8-atom disordered pattern for
arsenic and phosphorus are shown in Fig. 6, along with
the mixed-atom band structure which is again included
for reference. As before, we can match common fea-
tures such as the band curvature between the mixed and
explicit-disordered band structures, and thereby assign
individual bands to 1L/ (blue lines), 2L’ (red lines) and
1T'/2T bands (black lines). While the qualitative shape of
the individual bands is very similar to their mixed-atom
counterparts, the bands are shifted relative to one an-
other. In addition, both 1L/ and 2L’ bands split into
two sets, which is most evident in the 1L’ levels. In
sharp contrast to the explicit-ordered case discussed ear-
lier [Fig. 5], the 1L/ bands maintain their high and low
curvature branches along <110>>. This suggests that the
strong coupling between the two 1L’ elliptical valleys in
the explicit-ordered case does not occur here. That said,
the degeneracy of these valleys remains broken.

In order to understand this, we need to look at the 8-
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FIG. 6: Band structure near the I' point using mixed-atom
and explicit-doping representations with the in-plane doping
pattern indicated by the schematics above each panel. The
11/, 2L" and 1T'/2T bands are colored blue, red and black,
respectively. Individual bands change color as they undergo
avoided crossings. The bands are plotted one-quarter of the
way to the zone boundary in each direction. The light-gray
shading in the schematics highlights the dopant repeat unit,
while the dashed lines indicate the in-plane repeat unit. All
calculations employ an 8-atom in-plane repeat, an 80L super-
cell with a 6x6x1 k-point grid.

atom dopant pattern that is shown above the band struc-
tures in Fig. 6. The key point to observe here is that the
[110] and [110] directions are inequivalent in this pat-
tern; a fact that is unavoidable with two dopants and an
8-atom in-plane repeat. This directional inequivalence
in turn means that the band structure along the corre-
sponding reciprocal directions will be different. In the
Fig. 6 band structures, we have actually plotted the two
directions together using solid and dashed lines for [110]
and |110], respectively, which makes these differences ap-
parent. Keeping in mind that the low-curvature branch
corresponds to the longitudinal axis of an elliptical valley,
we can see that the lower of the two 1L/ valleys is oriented
with its longitudinal axis along [110], while the higher
valley is oriented along [110]. The broken degeneracy in
the 1L/ valleys can thus be attributed to directional in-
equivalency of the dopant potential. The same occurs for
the 2L’ bands, except that the splitting is much smaller
and the [110]-oriented valley is the preferred orientation.

The band structures for arsenic [Fig. 6(b)] and phos-
phorus [Fig. 6(c)| are again very similar. As before, we
calculate the confinement valley splitting VS as the av-
erage energy difference between 11/ and 2L/. From this
we derive L/ valley splittings of 171 and 160 meV for
a simple model of 1/4 ML disordered arsenic and phos-
phorus in §-doped germanium, respectively. These valley
splittings are still considerably larger than the 100 meV



obtained from the approximate mixed-atom approach.
However, they are also notably reduced from the explicit-
ordered model (193 meV; c¢f. Table II), which highlights
the importance of taking dopant-disorder effects into ac-
count. Key band structure parameters of this 8-atom
explicit-disordered model are summarized in Table III. In
contrast to the earlier ordered calculations (see Table II),
we see here that the effective masses of the explicit-atom
band structures are very similar to the mixed case, and
again that arsenic has a similar effect to phosphorus.

F. Disorder without directional inequivalency via a
coarse grid approach

In a realistically disordered dopant arrangement, the
[110] and [110] directions should of course be fully equiv-
alent, and the same applies to the [100] and [010] direc-
tions. These constraints are not satisfied by the 8-atom
explicit-disordered pattern discussed in the previous sec-
tion which caused the degenerate L’ valleys to split in
energy [cf Figs. 6(b,c)]. In this section we switch to a
larger 16-atom repeat, which is the smallest unit that can
accommodate 1/4 ML explicit-disordered dopants with-
out introducing directional inequivalencies. The specific
phosphorus dopant arrangement patterns considered here
are shown in Fig. 7 together with their associated band
structures. We compare the 8-atom repeat pattern of the
previous section with two types of a 16-atom pattern. All
three patterns are equivalent in [100] and [010]; however,
only the two 16-atom patterns are also equivalent in [110]
and [110].

The larger unit cell used in these calculations (16-
atoms by 80L, or 1280 atoms in total) is computation-
ally taxing, requiring a truncation of the model in some
other aspect to remain feasible. This was achieved here
by switching to a coarse sampling of the Brillouin zone
using a k-point mesh that is about half as dense as used
elsewhere in this work.?* Comparing the 8-atom explicit-
disordered pattern [Fig. 7(a)|] obtained using the coarse
approach with its full model counterpart [Fig. 6(c)], we
see that the qualitative characteristics of the band struc-
ture are almost entirely preserved. This includes the sig-
nificant splitting of the 1L/ bands due to directional in-
equivalence, and the much smaller splitting of the 2L’

TABLE III: Calculated valley splittings (VS, given in meV) of
the L’ and I band minima for the 8-atom disordered dopant
distributions shown in Figs. 6. Also shown are the averaged
longitudinal and transverse effective masses (in units of m)
for the 1L" and 2L’ bands.

VS, VSr m},, m,
1-at. Mixed 100 3 1.09/0.10 0.92/0.10
8-at. Explicit As 171 53  0.85/0.11  0.89/0.10
8-at. Explicit P 160 70  0.87/0.11  0.90/0.10
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FIG. 7: Band structure near the I' point using explicit phos-
phorus dopants and the coarse k-point model.*® Shown are
band structures for (a) an 8-atom disordered dopant repeat
pattern and (b,c) two types of a 16-atom disordered repeat
pattern. The dopant in-plane repeat is indicated using gray
background shading. 1L', 2L/, and 1T'/2T" are colored blue,
red, and black, respectively. All calculations were conducted
using an 80L supercell with a 16-atom in-plane unit cell which
is outlined in the schematic using dashed lines.

bands. Quantitative differences occur in the band en-
ergies, which are upshifted by approximately 50 meV,
and the valley splittings, which are reduced by approxi-
mately 15 meV. For the purpose of assessing the effects of
explicit disorder without any directional artefacts, these
differences are acceptable.

Looking now at the band structures of the 16-atom
explicit-disordered models [Figs. 7(b,c)], it is immedi-
ately evident that the L’ valleys are again degenerate.
Ounly a single minimum is seen for the 1L’ band (blue
lines) with a low and a high curvature branch along
<110>, which indicates a pair of elliptical valleys cross-
ing at a 90° angle. The 2L’ valleys (red lines) are also
degenerate for the type 2 pattern [Fig. 7(c)|, whereas
a small amount of splitting occurs for the type 1 pat-
tern [Fig. 7(b)|, presumably due to the 2L/ bands be-
ing closely entangled with the 1T'/2T" bands. Overall,
the qualitative similarities between the 16-atom explicit-
disordered band structures to those of the mixed-atom
approach [e.g. Fig. 5(a)| are striking. Common to all is
that the L' band minima undergo valley splitting into two
sets, namely 1L/ and 2L’. Each is composed of a degener-
ate, or almost degenerate, pair of 90° rotated valleys due
to the Brillouin zone folding as discussed in Section ITI C.
The strong coupling of these valleys seen in the ordered
cases [c¢f. Fig. 5(b,c)| is absent, as is the breaking of de-
generacy due to the directional inequivalency of the 8-



TABLE IV: Calculated valley splittings (VS, given in meV) of
the L' and ' band minima for the disordered dopant distribu-
tions shown in Fig. 7. These results were obtained using the
coarse k-point model.>® Also reported are longitudinal and
transverse effective masses (in units of m,) for the 1L/ and
2L/ bands. Where 1L’ and 2L/ are split, averaged effective
masses are reported. For reference, the mixed-atom results
(full model) are also included.

VSL/ VSF m}‘L/ m;L/
1-at. Mixed 100 3 1.09/0.10 0.92/0.10
8-at. Explicit P 147 55 0.86/0.11 0.82/0.10
16-at. Explicit P (type 1) 164 18 1.98/0.11 0.21/0.25
16-at. Explicit P (type 2) 127 22 0.85/0.11 0.80/0.10

atom dopant arrangement [cf. Fig. 6(b,c)].

Valley splittings and effective masses for all of the
coarse-model dopant patterns in Fig. 7 are listed in Ta-
ble IV. For reference, data for the mixed-atom rep-
resentation using the full model is also shown. There
are several important points to note. Firstly, the ef-
fective masses for the 8-atom explicit-disordered pattern
are very similar to those of the corresponding full model
listed in Table III. Secondly, the substantial differences in
effective masses between the two 16-atom patterns shows
that the dopant placement has a strong effect on the cur-
vature of the bands. Our assessment is that the type 2
pattern provides a superior representation of dopant dis-
order as it avoids the strong interactions which are appar-
ent for the type 1 pattern. The final point is that the ef-
fective masses of the 16-atom type 2 pattern are virtually
the same as those of the 8-atom explicit-disordered pat-
tern. From this we learn that an 8-atom in-plane repeat
is sufficient to compute effective masses, even though the
band structure exhibits strong directional inequivalence.

IV. DISCUSSION & CONCLUSIONS

Using density functional theory in combination with
mixed-atom and explicit-atom approaches we have quan-
tified the electronic structure of d§-doped germanium.
The mixed-atom approach allows the identification of the
three primary band minima of the two dimensional elec-
tron gas (2DEG) and their variation with dopant concen-
tration. The band structure of the 2DEG is character-
ized by a set of minima at (k, k,)=(+n/a,£7/a), that
is, the plane perpendicular projection of the bulk con-
duction band minima into the plane. For concentrations
up to 0.1 ML these are the only occupied bands, while at
higher dopant concentrations bands centered at I' are oc-
cupied. Only above concentrations of around 0.4 ML are
the A minima near (£1.67/a,0) and (0,+1.67/a) occu-
pied. This behavior contrasts with that of silicon where
the first bands of the 2DEG to be populated are cen-
tered at the I' minimum and only two sets of band min-

ima are pulled into the band gap by the doping poten-
tial. Another important difference is that the Bohr radius
of a donor in germanium is around 80 A, as compared
to around 30 A in silicon.’® Consequently, the plane-
perpendicular extent of a 2DEG in germanium is larger
than in silicon. One practical implication of this differ-
ence is that substantially larger unit cells are required to
isolate the d-layers from their periodic images. Specifi-
cally, when we performed 40L calculations in germanium
the J layer was clearly not isolated, whereas in previous
silicon work 40L was sufficient.!7:18:20

The explicit-atom approaches are complementary to
the mixed-atom calculations and highlight the difficul-
ties faced when describing a disordered two-dimensional
layer of explicit-atom dopants. The first problem is com-
putational, since much larger in-plane repeat units are re-
quired which constrains the doping concentrations that
can be explored. This in turn complicates interpreta-
tion of the bandstructure as most of the relevant band
minima are folded to the I" point. A second problem
is that the smallest possible representation for a given
dopant concentration is artificially ordered due to period-
icity, and this ordering introduces a large and unphysical
splitting of the principal band minima. To represent dis-
order with explicit atoms even larger cells are required,
in which an additional consideration is the relative place-
ment of the dopants. If the dopant pattern is anisotropic
with respect to the underlying band structure then addi-
tional bands arise due to orientational splitting between
the elliptically-shaped conduction band minima. Accord-
ingly, a 16-atom in-plane repeat is the smallest possible
system which can exhibit a degree of disorder and not
be anisotropic. Systems of this size are computationally
very demanding and require a substantially coarser sam-
pling of the Brillouin zone to be practical.

In addition to the largely qualititative understanding
discussed above, the simulations quantify several impor-
tant transport-related details of the band structure, in
particular the valley splitting and effective masses. These
quantities are an important input to device-scale mod-
elling such as employed in Ref. 41. The exact value of the
L’ valley splitting is dependent on the particular model
employed, spanning a range of 100 to 193 meV. The
largest splittings occur for highly ordered dopant pat-
terns which are unrealistic and unlikely to be achievable
experimentally, while the lower value was obtained using
the mixed-atom model which describes the dopant plane
using hybrid atoms. Our best estimate for a 1/4 ML
Ge:P doping concentration is that the valley splitting is
in the vicinity of 140 to 160 meV, with the latter value
coming from Table III and the former from Table IV,
noting that the splitting in a coarse model of an 8-atom
dopant pattern was 13 eV smaller than the corresponding
full model.

Effective masses are less dependent on the model em-
ployed, with even the mixed-atom approach providing
similar estimates to many of the explicit-atom models.
The only models to exhibit significant variability are the



unrealistic highly ordered arrangements in Table IT and
the clustered type 1 arrangement in Table IV. The light
effective masses are virtually identical to the bulk value
at the L point, while the heavy effective masses are to
first order explained by a simple geometric projection of
the ellipsoidal valleys into the k;,k, plane. The main
difference to note is that the 1L’ heavy branch has an
effective mass around 20% smaller than the mixed-atom
models, with a smaller difference seen for 2L.’. Finally, we
note that the band strutures of arsenic and phosphorus
d-layers have many common features, with valley split-
tings and effective masses being very similar. In the case
of valley splittings, the differences are typically no more
than 10-15 meV. Although Ge:As J-layers have not yet
been fabricated, there is no a priori reason against doing
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so, and the calculations suggest that they too would be
promising candidates for 2DEG’s in nanoscale devices.

Acknowledgements

This work was supported by the Australian Research
Council (ARC) through the Centre of Excellence for
Quantum Computation and Communication Technology
(Project No. CE1100096). The project used computa-
tional resources provided by the iVEC facility at Mur-
doch University. G.S. acknowledges support from the
ARC (Project. No. DP130100403). JDG, NAM and
MYS also thank the ARC for fellowships.

L G. Scappucci, G. Capellini, W. C. T. Lee, and M. Y. Sim-
mons, Appl. Phys. Lett. 94 (16) (2009).

2 R. Pillarisetty, Nature 479, 324 (2011).

3 D. Liang and J. E. Bowers, Nat. Photonics 4, 511 (2010).

4 B. Dutt, D. Sukhdeo, D. Nam, B. Vulovic, Z. Yuan, and
K. Saraswat, IEEE Photonics Journal 4, 2002 (2012)

5 R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette,
M. Romagnoli, L. C. Kimerling, and J. Michel, Opt. Ex-
press 20, 11316 (2012).

5 G. Scappucci, G. Capellini, B. Johnston, W. M. Klesse, J.
A. Miwa, and M. Y. Simmons, Nano Lett. 11, 2272 (2011).

7 G. Scappucci, G. Capellini, W. M. Klesse, and M. Y. Sim-
mons, Nanotechnology 22, 145604 (2011).

8 G. Scappucci, W. M. Klesse, A. R. Hamilton, G. Capellini,
D. L. Jaeger, M. R. Bischof, R. F. Reidy, B. P. Gorman,
and M. Y. Simmons, Nano Lett. 12, 4953 (2012).

9 G. Scappucci, G. Capellini, W. M. Klesse, and M.Y. Sim-
mons, Nanoscale 5 2600 (2013).

10 7. L. McDonell, N. A. Marks, O. Warschkow, H. F. Wilson,
P. V. Smith, and M. W. Radny, Phys. Rev. B 72, 193307
(2005).

A, N. Kholod, A. Saul, J. D. Fuhr, V. E. Borisenko, and
F. A. d’Avitaya, Phys. Rev. B 62, 12949 (2000).

12 M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, J.
Appl. Phys. 107, 013710 (2010).

13 M. Virgilio and G. Grosso, Phys. Rev. B 79, 165310 (2009).

14 M. Bonfanti, E. Grilli, M. Guzzi, M. Virgilio, G. Grosso,
D. Chrastina, G. Isella, H. von Kénel, and A. Neels, Phys.
Rev. B 78, 041407R (2008).

15 B. H. Hwang, S. Das Sarma, Phys. Rev. B 87, 125411
(2013).

16D, J. Carter, O. Warschkow, N. A. Marks, and D. R.
McKenzie, Phys. Rev. B 79, 033204 (2009); ibid. 80,
049901 (2009).

7' D. J. Carter, O. Warschkow, N. A. Marks, and D. R.
McKenzie, Nanotechnol. 22, 065701 (2011).

¥ D. J. Carter, O. Warschkow, N. A. Marks, and D. R.
McKenzie, Phys. Rev. B 87, 045204 (2013).

9 A. Budi, D. W. Drumm, M. C. Per, A. Tregonning, S. P.
Russo, and L. C. L Hollenberg, Phys. Rev. B 86, 165123
(2012).

20 D. W. Drumm, A. Budi, M. C. Per, S. P. Russo, and L. C.
L Hollenberg, Nano. Res. Lett. 8, 111 (2013).

21 D. W. Drumm, J.S. Smith, M. C. Per, A. Budi, L.C.L.
Hollenberg, and S. P. Russo, Phys. Rev. Lett. 110, 126802
(2013).

22 J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Jun-
quera, P. Ordejon, and D. Sanchez-Portal, J. Phys. Con-
dens. Matter 14, 2745 (2002).

23 N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993
(1991).

24 M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616
(1989)

25 H. J. Monkhorst, and J. D. Pack, Phys. Rev. B 13, 5188
(1976).

26 W. Martienssen and H. Warlimont (Eds.), Springer Hand-
book of Condensed Matter and Materials Data, Springer,
Berlin (2005).

2T 'W. G. Aulbur, L. Jénsson, and J. W. Wilkins, Solid State
Phys. 54, 1 (1999).

28 J. Coutinho, S. Oberg, V. J. B. Torres, M. Barroso, R.

Jones, and P. R. Briddon, Phys. Rev. B 73, 235213 (2006).

C. Claeys and E. Simoen, Germanium-based technologies:

From Materials to Devices, Elsevier BV, Oxford (2007).

30 P. V. Smith, M. Hermanowicz, G. A. Shah, and M. W.
Radny, Comput. Mater. Sci. 54, 37 (2012).

31'S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J.
Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505
(1998).

32 §. Zwerdling, B. Lax, L. M. Roth, and K. J. Button, Phys.
Rev. 114, 80 (1959).

3% K-H. Hellwege, and O. Madelung (Eds.), Numerical Data
and Functional Relationships in Science and Technology,
Landolt-Bornstein New Series, Group III, vols. 17a and
22a, Springer, Berlin, (1982).

34 H. Tahini, A. Chroneos, R.W. Grimes, U. Schwingen-

schlogl, and H.Bracht, Appl. Phys. Lett. 99, 072112

(2011).

S. M. Sze, and K. K. Ng Physics of semiconductors devices,

3rd Edition, John Wiley & Sons, Inc., New Jersey (2007).

36 1. Nordheim, Ann. Phys. (Leipzig) 9, 607 (1931).

37 L. Bellaiche and D. Vanderbilt, Phys. Rev. B 61, 7877
(2000).

38 @G. Qian, Y.-C. Chang, and J.R. Tucker, Phys. Rev. B 71,
045309 (2005).

39 The 16-atom unit cell is sampled using a 2x2x1 k-point

29

35



11

grid. This is slightly less than half the density used else- John Wiley & Sons, New York, p. 211 (2005).

where in this work. The equivalent k-point density in an 41 M. Fuechsle, S. Mahapatra, F. A. Zwanenburg, M. Friesen,
8-atom unit cell is 2v/2x2v2x1 ~ 2.8x2.8x1 whereas M. A. Eriksson, and M. Y. Simmons, Nat. Nanotechnol. 5,
6x6x1 is used in our full model. 502 (2010).

40 . Kittel, Introduction to Solid State Physics, 8th Ed.,



