773 research outputs found

    Episodic disk accretion in the halo of the 'old' Pre-Main Sequence cluster Eta Chamaeleontis

    Full text link
    We present multi-epoch medium-resolution observations of two M4.5 candidate members in the halo of the ~8 Myr Eta Chamaeleontis open cluster. Over six months of observations both stars exhibited variations in their H-alpha line profiles on timescales of days to months, with at least one episode of substantial activity attributable to accretion from a circumstellar disk. We derive an accretion rate ~10^-8.7 Msun/yr for this event, with a rate of ~10^-10.6 Msun/yr in quiescence. Episodic accretion like that observed here means existing surveys of accreting Weak-lined T-Tauri Stars in young clusters are likely incomplete and that gas dissipation timescales calculated from the fraction of accreting objects are underestimates.Comment: 5 pages, 5 figures, 1 table. Accepted for publication in MNRAS Letter

    Respiratory Evaporative Water Loss During Hovering and Forward Flight in Hummingbirds

    Full text link
    Hummingbirds represent an end point for small body size and water flux in vertebrates. We explored the role evaporative water loss (EWL) plays in management of their large water pool and its use in dissipating metabolic heat. We measured respiratory evaporative water loss (REWL) in hovering hummingbirds in the field (6 species) and over a range of speeds in a wind tunnel (1 species) using an open-circuit mask respirometry system. Hovering REWL during the active period was positively correlated with operative temperature (Te) likely due to some combination of an increase in the vapor-pressure deficit, increase in lung ventilation rate, and reduced importance of dry heat transfer at higher Te. In rufous hummingbirds (Selasphorus rufus; 3.3 g) REWL during forward flight at 6 and 10 m/s was less than half the value for hovering. The proportion of total dissipated heat (TDH) accounted for by REWL during hovering at Te\u3e40 °C was b40% in most species. During forward flight in S. rufus the proportion of TDH accounted for by REWL was ~35% less than for hovering. REWL in hummingbirds is a relatively small component of the water budget compared with other bird species (b20%) so cutaneous evaporative water loss and dry heat transfer must contribute significantly to thermal balance in hummingbirds

    Evolution of 21st Century Sea Level Rise Projections

    Get PDF
    The modern era of scientific global‐mean sea level rise (SLR) projections began in the early 1980s. In subsequent decades, understanding of driving processes has improved, and new methodologies have been developed. Nonetheless, despite more than 70 studies, future SLR remains deeply uncertain. To facilitate understanding of the historical development of SLR projections and contextualize current projections, we have compiled a comprehensive database of 21st century global SLR projections. Although central estimates of 21st century global‐mean SLR have been relatively consistent, the range of projected SLR has varied greatly over time. Among studies providing multiple estimates, the range of upper projections shrank from 1.3–1.8 m during the 1980s to 0.6–0.9 m in 2007, before expanding again to 0.5–2.5 m since 2013. Upper projections of SLR from individual studies are generally higher than upper projections from the Intergovernmental Panel on Climate Change, potentially due to differing percentile bounds or a predisposition of consensus‐based approaches toward relatively conservative outcomes.Plain Language SummaryIn spite of more than 35 years of research, and over 70 individual studies, the upper bound of future global‐mean sea level rise (SLR) remains deeply uncertain. In an effort to improve understanding of the history of the science behind projected SLR, we present and analyze the first comprehensive database of 21st century global‐mean SLR projections. Results show a reduction in the range of SLR projections from the first studies through the mid‐2000s that has since reversed. In addition, results from this work indicate a tendency for Intergovernmental Panel on Climate Change reports to err on the side of least drama—a conservative bias that could potentially impede risk management.Key PointsWe present the first comprehensive database of 21st century global sea level rise projectionsUpper estimates of sea level rise in 2100 are often higher than upper bounds found in Intergovernmental Panel on Climate Change reportsA comparison of recent global sea level rise projections reveals far greater agreement among studies in 2050 compared to 2100Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147167/1/eft2484_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147167/2/eft2484.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147167/3/eft2_84-sup-0001-2018EF000991-Figs01.pd

    Morphological and kinematic basis of the hummingbird flight stroke: scaling of flight muscle transmission ratio

    Get PDF
    Hummingbirds (Trochilidae) are widely known for their insect-like flight strokes characterized by high wing beat frequency, small muscle strains and a highly supinated wing orientation during upstroke that allows for lift production in both halves of the stroke cycle. Here, we show that hummingbirds achieve these functional traits within the limits imposed by a vertebrate endoskeleton and muscle physiology by accentuating a wing inversion mechanism found in other birds and using long-axis rotational movement of the humerus. In hummingbirds, long-axis rotation of the humerus creates additional wing translational movement, supplementing that produced by the humeral elevation and depression movements of a typical avian flight stroke. This adaptation increases the wing-to-muscle-transmission ratio, and is emblematic of a widespread scaling trend among flying animals whereby wing-to-muscle-transmission ratio varies inversely with mass, allowing animals of vastly different sizes to accommodate aerodynamic, biomechanical and physiological constraints on muscle-powered flapping flight

    Hybrid electron spin resonance and whispering gallery mode resonance spectroscopy of Fe3+ in sapphire

    Get PDF
    The development of a new era of quantum devices requires an understanding of how paramagnetic dopants or impurity spins behave in crystal hosts. Here, we describe a spectroscopic technique which uses traditional electron spin resonance (ESR) combined with the measurement of a large population of electromagnetic whispering gallery modes. This allows the characterization of the physical parameters of paramagnetic impurity ions in the crystal at low temperatures. We present measurements of two ultrahigh-purity sapphires cooled to 20 mK in temperature, and determine the concentration of Fe3 ions and their frequency sensitivity to a dc magnetic field. Our method is different from ESR in that it is possible to track the resonant frequency of the ion from zero applied magnetic field to any arbitrary value, allowing excellent measurement precision. This high precision reveals anisotropic behavior of the Zeeman splitting. In both crystals, each Zeeman component demonstrates a different g factor

    Doing research with children and young people who do not use speech for communication

    Get PDF
    Despite emphasis in policy on participation of disabled children, we still know relatively little about how to obtain the views of disabled children with significant communication impairment and their views are often overlooked in planning and service provision. This article describes how the views of children who do not use speech were accessed in research aiming to identify disabled children and young people's priorities regarding outcomes of social care and support services. The main challenge was to develop a method that was reliable, non-threatening, enjoyable and relevant to individual children, as well as enabling children to think beyond their everyday life and express what they aspire to

    Morphological Number Counts and Redshift Distributions to I = 25 from the Hubble Deep Fields: Constraints on Cosmological Models from Early Type Galaxies

    Get PDF
    We combine magnitude and photometric redshift data on galaxies in the Hubble Deep Fields with morphological classifications in order to separate out the distributions for early type galaxies. The updated morphological galaxy number counts down to I = 25 and the corresponding redshift distributions are used as joint constraints on cosmological models, in particular on the values of the density parameter Omega_{0} and normalised cosmological constant Lambda_{0}. We find that an Einstein - de Sitter universe with simple passive evolution gives an excellent fit to the counts and redshift data at all magnitudes. An open, low Omega_{0}, model with no net evolution (and conservation of the number of ellipticals), which fits the counts equally well, is somewhat less successful, predicting slightly lower mean redshifts and, more significantly, the lack of a high--z tail. A number conserving model with a dominant contribution from Lambda_{0}, on the other hand, is far less successful, predicting a much narrower distribution than seen. More complex models are obviously possible, but we conclude that if large scale transmutation between types does {\it not} occur, then the lambda-dominated models provide a very poor fit to the current data.Comment: Accepted for publication in MNRA
    • 

    corecore