135 research outputs found

    An overview of the ciao multiparadigm language and program development environment and its design philosophy

    Full text link
    We describe some of the novel aspects and motivations behind the design and implementation of the Ciao multiparadigm programming system. An important aspect of Ciao is that it provides the programmer with a large number of useful features from different programming paradigms and styles, and that the use of each of these features can be turned on and off at will for each program module. Thus, a given module may be using e.g. higher order functions and constraints, while another module may be using objects, predicates, and concurrency. Furthermore, the language is designed to be extensible in a simple and modular way. Another important aspect of Ciao is its programming environment, which provides a powerful preprocessor (with an associated assertion language) capable of statically finding non-trivial bugs, verifying that programs comply with specifications, and performing many types of program optimizations. Such optimizations produce code that is highly competitive with other dynamic languages or, when the highest levéis of optimization are used, even that of static languages, all while retaining the interactive development environment of a dynamic language. The environment also includes a powerful auto-documenter. The paper provides an informal overview of the language and program development environment. It aims at illustrating the design philosophy rather than at being exhaustive, which would be impossible in the format of a paper, pointing instead to the existing literature on the system

    Staff perceptions towards virtual reality-motivated treadmill exercise for care home residents: a qualitative feedback study with key stakeholders and follow-up interview with technology developer

    Get PDF
    Objectives Health and care resources are under increasing pressure, partly due to the ageing population. Physical activity supports healthy ageing, but motivating exercise is challenging. We aimed to explore staff perceptions towards a virtual reality (VR) omnidirectional treadmill (MOTUS), aimed at increasing physical activity for older adult care home residents. Design Interactive workshops and qualitative evaluation. Settings Eight interactive workshops were held at six care homes and two university sites across Cornwall, England, from September to November 2021. Participants Forty-four staff participated, including care home, supported living, clinical care and compliance managers, carers, activity coordinators, occupational therapists and physiotherapists. Interventions Participants tried the VR treadmill system, followed by focus groups exploring device design, potential usefulness or barriers for care home residents. Focus groups were audio-recorded, transcribed verbatim and thematically analysed. We subsequently conducted a follow-up interview with the technology developer (September 2022) to explore the feedback impact. Results The analysis produced seven key themes: anticipated benefits, acceptability, concerns of use, concerns of negative effects, suitability/unsuitability, improvements and current design. Participants were generally positive towards VR to motivate care home residents’ physical activity and noted several potential benefits (increased exercise, stimulation, social interaction and rehabilitation). Despite the reported potential, staff had safety concerns for frail older residents due to their standing position. Participants suggested design improvements to enhance safety, usability and accessibility. Feedback to the designers resulted in the development of a new seated VR treadmill to address concerns about falls while maintaining motivation to exercise. The follow-up developer interview identified significant value in academia–industry collaboration. Conclusion The use of VR-motivated exercise holds the potential to increase exercise, encourage reminiscence and promote meaningful activity for care home residents. Staff concerns resulted in a redesigned seated treadmill for those too frail to use the standing version. This novel study demonstrates the importance of stakeholder feedback in product design

    The WOCE–era 3–D Pacific Ocean circulation and heat budget

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Progress In Oceanography 82 (2009): 281-325, doi:10.1016/j.pocean.2009.08.002.To address questions concerning the intensity and spatial structure of the 3–dimensional circulation within the Pacific Ocean and the associated advective and diffusive property flux divergences, data from approximately 3000 high–quality hydrographic stations collected on 40 zonal and meridional cruises have been merged into a physically consistent model. The majority of the stations were occupied as part of the World Ocean Circulation Experiment (WOCE), which took place in the 1990s. These data are supplemented by a few pre–WOCE surveys of similar quality, and time–averaged direct–velocity and historical hydrographic measurements about the equator. An inverse box model formalism is employed to estimate the absolute along–isopycnal velocity field, the magnitude and spatial distribution of the associated diapycnal flow and the corresponding diapycnal advective and diffusive property flux divergences. The resulting large–scale WOCE Pacific circulation can be described as two shallow overturning cells at mid– to low latitudes, one in each hemisphere, and a single deep cell which brings abyssal waters from the Southern Ocean into the Pacific where they upwell across isopycnals and are returned south as deep waters. Upwelling is seen to occur throughout most of the basin with generally larger dianeutral transport and greater mixing occurring at depth. The derived pattern of ocean heat transport divergence is compared to published results based on air–sea flux estimates. The synthesis suggests a strongly east/west oriented pattern of air–sea heat flux with heat loss to the atmosphere throughout most of the western basins, and a gain of heat throughout the tropics extending poleward through the eastern basins. The calculated meridional heat transport agrees well with previous hydrographic estimates. Consistent with many of the climatologies at a variety of latitudes as well, our meridional heat transport estimates tend toward lower values in both hemispheres.This work was funded by National Science Foundation grants OCE–9710102, OCE– 9712209 and OCE–0079383, and also benefited from work on closely related projects funded by NSF grants OCE–0223421 and OCE–0623261, and NOAA grant NA17RJ1223 funded through CICOR. For G.C.J. NASA funding came under Order W–19,314

    Current assessment of the Red Rectangle band problem

    Full text link
    In this paper we discuss our insights into several key problems in the identification of the Red Rectangle Bands (RRBs). We have combined three independent sets of observations in order to try to define the constraints guiding the bands. We provide a summary of the general behavior of the bands and review the evidence for a molecular origin of the bands. The extent, composition, and possible absorption effects of the bands are discussed. Comparison spectra of the strongest band obtained at three different spectral resolutions suggests that an intrinsic line width of individual rotational lines can be deduced. Spectroscopic models of several relatively simple molecules were examined in order to investigate where the current data are weak. Suggestions are made for future studies to enhance our understanding of these enigmatic bands

    Hamstring muscles: Architecture and innervation

    Get PDF
    Knowledge of the anatomical organization of the hamstring muscles is necessary to understand their functions, and to assist in the development of accurate clinical and biomechanical models. The hamstring muscles were examined by dissection in six embalmed human lower limbs with the purpose of clarifying their gross morphology. In addition to obtaining evidence for or against anatomical partitioning ( as based on muscle architecture and pattern of innervation), data pertaining to architectural parameters such as fascicular length, volume, physiological cross-sectional area, and tendon length were collected. For each muscle, relatively consistent patterns of innervation were identified between specimens, and each was unique with respect to anatomical organization. On the basis of muscle architecture, three regions were identified within semimembranosus. However, this was not completely congruent with the pattern of innervation, as a primary nerve branch supplied only two regions, with the third region receiving a secondary branch. Semitendinosus comprised two distinct partitions arranged in series that were divided by a tendinous inscription. A singular muscle nerve or a primary nerve branch innervated each partition. In the biceps femoris long head the two regions were supplied via a primary nerve branch which divided into two primary branches or split into a series of branches. Being the only muscle to cross a single joint, biceps femoris short head consisted of two distinct regions demarcated by fiber direction, with each innervated by a separate muscle nerve. Architecturally, each muscle differed with respect to parameters such as physiological cross-sectional area, fascicular length and volume, but generally all partitions within an individual muscle were similar in fascicular length. The long proximal and distal tendons of these muscles extended into the muscle bellies thereby forming elongated musculotendinous junctions. Copyright (C) 2005 S. Karger AG, Basel

    The measurement of Electron Affinities by the Gaseous Electron Capture Technique

    No full text
    Improvements of the gaseous electron capture technique for the measurement of absolute electron affinities of organic molecules are described. The dependence of the electron concentration on each of the parameters, pulse amplitude, pulse width, pulse interval, flow rate, and temperature is determined experimentally. Theoretical explanations for each of these dependences, except temperature, are given. The experimental results also lead to values of the drift velocity of electrons. Probable reaction schemes with and without an electron acceptor present are considered. Steady state concentrations of electrons are calculated in each case. The effect of the above parameters on the decrease in electron concentration in the presence of an electron acceptor is determined. Under these standardized conditions, the decrease in electron concentration is measured as a function of temperature. This measurement leads to a value of 0.57 ± 0.01 eV for the electron affinity of anthracene. Under our experimental conditions, the method does not yield electron affinity values for 9, 10-anthraquinone or nitrobenzene
    • 

    corecore