626 research outputs found

    The contribution of DNA methylation to the (dys)function of oligodendroglia in neurodegeneration

    Get PDF
    Neurodegenerative diseases encompass a heterogeneous group of conditions characterised by the progressive degeneration of the structure and function of the central or peripheral nervous systems. The pathogenic mechanisms underlying these diseases are not fully understood. However, a central feature consists of regional aggregation of proteins in the brain, such as the accumulation of β-amyloid plaques in Alzheimer’s disease (AD), inclusions of hyperphosphorylated microtubule-binding tau in AD and other tauopathies, or inclusions containing α-synuclein in Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Various pathogenic mechanisms are thought to contribute to disease, and an increasing number of studies implicate dysfunction of oligodendrocytes (the myelin producing cells of the central nervous system) and myelin loss. Aberrant DNA methylation, the most widely studied epigenetic modification, has been associated with many neurodegenerative diseases, including AD, PD, DLB and MSA, and recent findings highlight aberrant DNA methylation in oligodendrocyte/myelin-related genes. Here we briefly review the evidence showing that changes to oligodendrocytes and myelin are key in neurodegeneration, and explore the relevance of DNA methylation in oligodendrocyte (dys)function. As DNA methylation is reversible, elucidating its involvement in pathogenic mechanisms of neurodegenerative diseases and in dysfunction of specific cell-types such as oligodendrocytes may bring opportunities for therapeutic interventions for these diseases

    Comparative Toxicity of Diphacinone to Northern Bobwhite (\u3ci\u3eColinus virginianus\u3c/i\u3e) and American Kestrels (\u3ci\u3eFalco sparverius\u3c/i\u3e)

    Get PDF
    The acute oral toxicity of the anticoagulant rodenticide diphacinone was found to be about 20 times greater to American kestrels (LD50=97 mg/kg) than to northern bobwhite (LD50=2,014 mg/kg). Several precise and sensitive clotting assays (prothrombin time, Russell’s Viper venom time, thrombin clotting time) were adapted for use in these species, and this combination of assays is recommended to detect effects of diphacinone and other rodenticides on coagulation. Oral administration of diphacinone over a range of doses (sublethal to the extrapolated LD15) prolonged prothrombin time and Russell’s Viper venom time within 24 to 48 hrs post-exposure. Prolongation of in vitro clotting time reflects impaired coagulation complex activity and was detected before or at the onset of overt signs of toxicity and lethality. These data will assist in the development of a pharmacodynamic model to assess and predict rodenticide toxicity to non-target avian species

    Comparative Toxicity of Diphacinone to Northern Bobwhite (\u3ci\u3eColinus virginianus\u3c/i\u3e) and American Kestrels (\u3ci\u3eFalco sparverius\u3c/i\u3e)

    Get PDF
    The acute oral toxicity of the anticoagulant rodenticide diphacinone was found to be about 20 times greater to American kestrels (LD50=97 mg/kg) than to northern bobwhite (LD50=2,014 mg/kg). Several precise and sensitive clotting assays (prothrombin time, Russell’s Viper venom time, thrombin clotting time) were adapted for use in these species, and this combination of assays is recommended to detect effects of diphacinone and other rodenticides on coagulation. Oral administration of diphacinone over a range of doses (sublethal to the extrapolated LD15) prolonged prothrombin time and Russell’s Viper venom time within 24 to 48 hrs post-exposure. Prolongation of in vitro clotting time reflects impaired coagulation complex activity and was detected before or at the onset of overt signs of toxicity and lethality. These data will assist in the development of a pharmacodynamic model to assess and predict rodenticide toxicity to non-target avian species

    Geographic Disparity of Female Athlete Triad Awareness and Access to Resources in the NCAA

    Get PDF
    The Female Athlete Triad is a pervasive, multifactorial morbidity among college athletes. The geographic disparity of female athlete triad awareness and access to resources in NCAA is unknown. PURPOSE: To determine geographic disparities in awareness of Triad components and resource access in the National Collegiate Athletic Association (NCAA). METHOD: Division I-III NCAA compliance officers were sent an email containing a request to disseminate a web-based survey to cross country coaches in their respective conferences. The web-linked instrument included: a study synopsis; an informed consent statement, and; the IRB-approved survey tool. Respondents were grouped geographically based upon conference headquarters location, regions included; Northeast, Midwest, South, and West. Statistical analysis, using JMP software, included frequency distributions and chi-square tests for categorical association. RESULTS: Coaches (n = 143; age = 40.7 ± 11.9 years; coaching experience = 14.1 ± 10.3 years) from 45 conferences participated. Location impacted coaches’ awareness of the term “female athlete triad” (p = 0.0183), which was highest in the West (90%), and; lowest in the South (74%). Geography did not influence Triad component recognition (p = 0.3907) (i.e. low energy availability, amenorrhea, low bone mineral density), however; only 54% of coaches correctly identified all Triad components. Coaches who had Triad awareness were more likely to possess understanding that menstrual irregularities are not a normal result of exercise (p = \u3c0.001). No relationship was identified between location and access to body composition technology (p = 0.2031), or; a registered dietician (p = 0.4869). However, only 30% and 53% of coaches had access to these biometric and dietetic resources, respectively. Western cross-country athletes (p = 0.0276) had the highest access to sport psychologists (50%); lowest access was in the Midwest (20%). CONCLUSION: Triad awareness and geographic resource disparities exist: Western coaches have a higher level of Triad awareness and superior access to psychological counseling, whereas; the South and Midwest had the lowest, respectively. Greater uniform access to resources amongst NCAA schools, regardless of geographic region, may positively impact Triad prevalence and outcomes

    CO\u3csub\u3e2\u3c/sub\u3e-Fixing One-Carbon Metabolism in a Cellulose-Degrading Bacterium \u3cem\u3eClostridium thermocellum\u3c/em\u3e

    Get PDF
    Clostridium thermocellum can ferment cellulosic biomass to formate and other end products, including CO2. This organism lacks formate dehydrogenase (Fdh), which catalyzes the reduction of CO2 to formate. However, feeding the bacterium 13C-bicarbonate and cellobiose followed by NMR analysis showed the production of 13C-formate in C. thermocellum culture, indicating the presence of an uncharacterized pathway capable of converting CO2 to formate. Combining genomic and experimental data, we demonstrated that the conversion of CO2 to formate serves as a CO2 entry point into the reductive one-carbon (C1) metabolism, and internalizes CO2 via two biochemical reactions: the reversed pyruvate: ferredoxin oxidoreductase (rPFOR), which incorporates CO2 using acetyl-CoA as a substrate and generates pyruvate, and pyruvate- formate lyase (PFL) converting pyruvate to formate and acetyl-CoA. We analyzed the labeling patterns of proteinogenic amino acids in individual deletions of all five putative PFOR mutants and in a PFL deletion mutant. We identified two enzymes acting as rPFOR, confirmed the dual activities of rPFOR and PFL crucial for CO2 uptake, and provided physical evidence of a distinct in vivo “rPFOR-PFL shunt” to reduce CO2 to formate while circumventing the lack of Fdh. Such a pathway precedes CO2 fixation via the reductive C1 metabolic pathway in C. thermocellum. These findings demonstrated the metabolic versatility of C. thermocellum, which is thought of as primarily a cellulosic heterotroph but is shown here to be endowed with the ability to fix CO2 as well

    The Coral Bleaching Automated Stress System (CBASS): A low‐cost, portable system for standardized empirical assessments of coral thermal limits

    Get PDF
    Ocean warming is increasingly affecting marine ecosystems across the globe. Reef-building corals are particularly affected by warming, with mass bleaching events increasing in frequency and leading to widespread coral mortality. Yet, some corals can resist or recover from bleaching better than others. Such variability in thermal resilience could be critical to reef persistence; however, the scientific community lacks standardized diagnostic approaches to rapidly and comparatively assess coral thermal vulnerability prior to bleaching events. We present the Coral Bleaching Automated Stress System (CBASS) as a low-cost, open-source, field-portable experimental system for rapid empirical assessment of coral thermal thresholds using standardized temperature stress profiles and diagnostics. The CBASS consists of four or eight flow-through experimental aquaria with independent water masses, lighting, and individual automated temperature controls capable of delivering custom modulating thermal profiles. The CBASS is used to conduct daily thermal stress exposures that typically include 3-h temperature ramps to multiple target temperatures, a 3-h hold period at the target temperatures, and a 1-h ramp back down to ambient temperature, followed by an overnight recovery period. This mimics shallow water temperature profiles observed in coral reefs and prompts a rapid acute heat stress response that can serve as a diagnostic tool to identify putative thermotolerant corals for in-depth assessments of adaptation mechanisms, targeted conservation, and possible use in restoration efforts. The CBASS is deployable within hours and can assay up to 40 coral fragments/aquaria/day, enabling high-throughput, rapid determination of thermal thresholds for individual genotypes, populations, species, and sites using a standardized experimental framework

    The Coral Bleaching Automated Stress System (CBASS): A Low-Cost, Portable System for Standardized Empirical Assessments of Coral Thermal Limits

    Get PDF
    Ocean warming is increasingly affecting marine ecosystems across the globe. Reef-building corals are particularly affected by warming, with mass bleaching events increasing in frequency and leading to widespread coral mortality. Yet, some corals can resist or recover from bleaching better than others. Such variability in thermal resilience could be critical to reef persistence; however, the scientific community lacks standardized diagnostic approaches to rapidly and comparatively assess coral thermal vulnerability prior to bleaching events. We present the Coral Bleaching Automated Stress System (CBASS) as a low-cost, open-source, field-portable experimental system for rapid empirical assessment of coral thermal thresholds using standardized temperature stress profiles and diagnostics. The CBASS consists of four or eight flow-through experimental aquaria with independent water masses, lighting, and individual automated temperature controls capable of delivering custom modulating thermal profiles. The CBASS is used to conduct daily thermal stress exposures that typically include 3-h temperature ramps to multiple target temperatures, a 3-h hold period at the target temperatures, and a 1-h ramp back down to ambient temperature, followed by an overnight recovery period. This mimics shallow water temperature profiles observed in coral reefs and prompts a rapid acute heat stress response that can serve as a diagnostic tool to identify putative thermotolerant corals for in-depth assessments of adaptation mechanisms, targeted conservation, and possible use in restoration efforts. The CBASS is deployable within hours and can assay up to 40 coral fragments/aquaria/day, enabling high-throughput, rapid determination of thermal thresholds for individual genotypes, populations, species, and sites using a standardized experimental framework

    S6K2-mediated regulation of TRBP as a determinant of miRNA expression in human primary lymphatic endothelial cells

    Get PDF
    MicroRNAs (miRNAs) are short non-coding RNAs that silence mRNAs. They are generated following transcription and cleavage by the DROSHA/DGCR8 and DICER/TRBP/PACT complexes. Although it is known that components of the miRNA biogenesis machinery can be phosphorylated, it remains poorly understood how these events become engaged during physiological cellular activation. We demonstrate that S6 kinases can phosphorylate the extended C-terminal domain of TRBP and interact with TRBP in situ in primary cells. TRBP serines 283/286 are essential for S6K-mediated TRBP phosphorylation, optimal expression of TRBP, and the S6K-TRBP interaction in human primary cells. We demonstrate the functional relevance of this interaction in primary human dermal lymphatic endothelial cells (HDLECs). Angiopoietin-1 (ANG1) can augment miRNA biogenesis in HDLECs through enhancing TRBP phosphorylation and expression in an S6K2-dependent manner. We propose that the S6K2/TRBP node controls miRNA biogenesis in HDLECs and provides a molecular link between the mTOR pathway and the miRNA biogenesis machinery

    Validating the fragment-based drug discovery strategy for targeting biological RNAs: Lead fragments specifically bind and remodel the TPP riboswitch

    Get PDF
    Thiamine pyrophosphate (TPP) riboswitches regulate essential genes in bacteria by changing conformation upon binding intracellular TPP. Previous studies using fragment-based approaches identified small molecule “fragments” that bind this gene-regulatory mRNA domain. Crystallographic studies now show that, despite having micromolar Kds, four different fragments bind the TPP riboswitch site-specifically, occupying the pocket that recognizes the aminopyrimidine of TPP. Unexpectedly, the unoccupied site that would recognize the pyrophosphate of TPP rearranges into a structure distinct from that of the cognate complex. This idiosyncratic fragment-induced conformation, also characterized by small-angle X-ray scattering (SAXS) and chemical probing (SHAPE), represents a possible mechanism for adventitious ligand discrimination by the riboswitch, and suggests that off-pathway conformations of RNAs can be targeted for drug development. Our structures, together with previous screening studies, demonstrate the feasibility of fragment-based drug discovery against RNA targets

    Semen amyloids participate in spermatozoa selection and clearance

    Get PDF
    Unlike other human biological fluids, semen contains multiple types of amyloid fibrils in the absence of disease. These fibrils enhance HIV infection by promoting viral fusion to cellular targets, but their natural function remained unknown. The similarities shared between HIV fusion to host cell and sperm fusion to oocyte led us to examine whether these fibrils promote fertilization. Surprisingly, the fibrils inhibited fertilization by immobilizing sperm. Interestingly, however, this immobilization facilitated uptake and clearance of sperm by macrophages, which are known to infiltrate the female reproductive tract (FRT) following semen exposure. In the presence of semen fibrils, damaged and apoptotic sperm were more rapidly phagocytosed than healthy ones, suggesting that deposition of semen fibrils in the lower FRT facilitates clearance of poor-quality sperm. Our findings suggest that amyloid fibrils in semen may play a role in reproduction by participating in sperm selection and facilitating the rapid removal of sperm antigens
    corecore