419 research outputs found

    Impact of Baseline Heart Failure Burden on Post-Implantable Cardioverter-Defibrillator Mortality Among Medicare Beneficiaries

    Get PDF
    ObjectivesThis study sought to assess the impact of baseline heart failure (HF) burden on survival with primary implantable cardioverter-defibrillator (ICD) among Medicare recipients.BackgroundSurvival after primary ICD implantation may differ between trial and Medicare populations.MethodsLinking data from the CMS (Centers for Medicare and Medicaid Services) ICD registry and the Medicare files (2005 to 2009), we identified primary ICD recipients age β‰₯66 years with ejection fraction ≀35%. Number of previous HF hospitalizations (prev-HF-hosp) and length of hospitalization prior to implantation were used to define HF burden. Crude all-cause mortality was estimated. Adjusted hazard ratios (HR) were derived from Cox models.ResultsOf 66,974 ICD recipients (73% men, 88% white, mean age 75 years), 11,876 died (average follow-up = 1.4 years), with 3-year mortality of 31%. Among patients with no prev-HF-hosp, 3-year mortality was 27% compared with 63% in those with β‰₯3 prev-HF-hosp (adjusted HR: 1.8). Among patients with same-day implantation, 3-year mortality was 25% compared with 53% in those with >1-week hospitalization days prior to implantation (adjusted HR: 1.9). Mortality at 3-year follow-up among the 31,685 ICD recipients with no prev-HF-hosp and same-day implantation (low HF burden) was similar to that in trials (22%).ConclusionsNearly one-third of Medicare ICD recipients died within 3 years, reflecting a population with more advanced age and disease than seen in trial populations for primary prevention ICD. Nearly one-half of Medicare recipients had a low HF burden and had a survival similar to trial ICD recipients. Future research is warranted to understand the effectiveness of primary ICD implantation among Medicare beneficiaries with heavy HF burdens

    Virtual teaching kitchen classes and cardiovascular disease prevention counselling among medical trainees

    Get PDF
    Background: Hands-on culinary medicine education for medical trainees has emerged as a promising tool for cardiovascular health promotion. Purpose: To determine whether virtual culinary medicine programming associates with Mediterranean diet (MedDiet) adherence and lifestyle medicine competencies among medical trainees across the USA. Method: A total of 1433 medical trainees across 19 sites over a 12-month period were included. The Cooking for Health Optimisation with Patients-Medical Trainees survey composed of 61 questions regarding demographics, nutritional attitudes, dietary habits including MedDiet score and lifestyle medicine counselling competencies. Multivariable logistic regression assessed the association of virtual culinary medicine education with MedDiet intake and nutritional attitudes. Results: There were 519 medical trainees who participated in virtual culinary medicine education and 914 medical trainees who participated in their standard nutrition curricula. More than one-half of participants were women (n=759) and the mean age was 27 years old. Compared with students enrolled in traditional nutrition curricula, participants in virtual culinary medicine education were 37% more likely to adhere to MedDiet guidelines for fruit intake (OR 1.37, 95% CI 1.03 to 1.83, p=0.03). Virtual culinary medicine education was associated with higher proficiency in lifestyle medicine counselling categories, notably recommendations involving fibre (OR 4.03; 95% CI 3.05 to 5.34), type 2 diabetes prevention (OR 4.69; 95% CI 3.51 to 6.27) and omega fatty acids (OR 5.21; 95% CI 3.87 to 7.02). Virtual culinary medicine education had a similar, although higher magnitude association with MedDiet counselling competency (OR 5.73, 95% CI 4.26 to 7.70) when compared with historical data previously reported using hands-on, in-person culinary medicine courseware (OR 4.97, 95% CI 3.89 to 6.36). Conclusions: Compared with traditional nutritional educational curricula, virtual culinary medicine education is associated with higher MedDiet adherence and lifestyle medicine counselling competencies among medical trainees. Both virtual and hands-on culinary medicine education may be useful for cardiovascular health promotion

    Infants with esophageal atresia and right aortic arch: Characteristics and outcomes from the Midwest Pediatric Surgery Consortium

    Get PDF
    Purpose Right sided aortic arch (RAA) is a rare anatomic finding in infants with esophageal atresia with or without tracheoesophageal fistula (EA/TEF). In the presence of RAA, significant controversy exists regarding optimal side for thoracotomy in repair of the EA/TEF. The purpose of this study was to characterize the incidence, demographics, surgical approach, and outcomes of patients with RAA and EA/TEF. Methods A multi-institutional, IRB approved, retrospective cohort study of infants with EA/TEF treated at 11 children's hospitals in the United States over a 5-year period (2009 to 2014) was performed. All patients had a minimum of one-year follow-up. Results In a cohort of 396 infants with esophageal atresia, 20 (5%) had RAA, with 18 having EA with a distal TEF and 2 with pure EA. Compared to infants with left sided arch (LAA), RAA infants had a lower median birth weight, (1.96β€―kg (IQR 1.54–2.65) vs. 2.57β€―kg (2.00–3.03), pβ€―=β€―0.01), earlier gestational age (34.5β€―weeks (IQR 32–37) vs. 37β€―weeks (35–39), pβ€―=β€―0.01), and a higher incidence of congenital heart disease (90% vs. 32%, pβ€―β€―0.29). Conclusion RAA in infants with EA/TEF is rare with an incidence of 5%. Compared to infants with EA/TEF and LAA, infants with EA/TEF and RAA are more severely ill with lower birth weight and higher rates of prematurity and complex congenital heart disease. In neonates with RAA, surgical repair of the EA/TEF is technically feasible via thoracotomy from either chest. A higher incidence of anastomotic strictures may occur with a right-sided approach

    The Epoxygenases CYP2J2 Activates the Nuclear Receptor PPARΞ± In Vitro and In Vivo

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are a family of three (PPARalpha, -beta/delta, and -gamma) nuclear receptors. In particular, PPARalpha is involved in regulation of fatty acid metabolism, cell growth and inflammation. PPARalpha mediates the cardiac fasting response, increasing fatty acid metabolism, decreasing glucose utilisation, and is the target for the fibrate lipid-lowering class of drugs. However, little is known regarding the endogenous generation of PPAR ligands. CYP2J2 is a lipid metabolising cytochrome P450, which produces anti-inflammatory mediators, and is considered the major epoxygenase in the human heart.Expression of CYP2J2 in vitro results in an activation of PPAR responses with a particular preference for PPARalpha. The CYP2J2 products 8,9- and 11-12-EET also activate PPARalpha. In vitro, PPARalpha activation by its selective ligand induces the PPARalpha target gene pyruvate dehydrogenase kinase (PDK)4 in cardiac tissue. In vivo, in cardiac-specific CYP2J2 transgenic mice, fasting selectively augments the expression of PDK4.Our results establish that CYP2J2 produces PPARalpha ligands in vitro and in vivo, and suggests that lipid metabolising CYPs are prime candidates for the integration of global lipid changes to transcriptional signalling events

    Endogenous Epoxygenases Are Modulators of Monocyte/Macrophage Activity

    Get PDF
    Background: Arachidonic acid is metabolized through three major metabolic pathways, the cyclooxygenase, lipoxygenase and CYP450 enzyme systems. Unlike cyclooxygenase and lipoxygenases, the role of CYP450 epoxygenases in monocyte/macrophage-mediated responses is not known.Methodology/Principal Findings: When transfected in vitro, CYP2J2 is an efficient activator of anti-inflammatory pathways through the nuclear receptor peroxisome proliferator-activated receptor (PPAR) alpha. Human monocytes and macrophages contain PPAR alpha and here we show they express the epoxygenases CYP2J2 and CYP2C8. Inhibition of constitutive monocyte epoxygenases using the epoxygenase inhibitor SKF525A induces cyclooxygenase (COX)-2 expression and activity, and the release of TNF alpha, and can be reversed by either add back of the endogenous epoxygenase products and PPAR alpha ligand 11,12-epoxyeicosatrienoic acid (EET) or the addition of the selective synthetic PPAR alpha ligand GW7647. In alternatively activated (IL-4-treated) monocytes, in contrast to classically activated cells, epoxygenase inhibition decreased TNF alpha release. Epoxygenases can be pro-inflammatory via superoxide anion production. The suppression of TNF alpha by SKF525A in the presence of IL-4 was associated with a reduction in superoxide anion generation and reproduced by the superoxide dismutase MnCl2. Similar to these acute activation studies, in monocyte derived macrophages, epoxygenase inhibition elevates M1 macrophage TNF alpha mRNA and further decreases M2 macrophage TNF alpha.Conclusions/Significance: In conclusion, epoxygenase activity represents an important endogenous pathway which limits monocyte activation. Moreover endogenous epoxygenases are immuno-modulators regulating monocyte/macrophage activation depending on the underlying activation state

    Functioning of Coastal River-Dominated Ecosystems and Implications for Oil Spill Response: From Observations to Mechanisms and Models

    Get PDF
    Coastal river-dominated oceans are physically complex, biologically productive, and intimately connected to human socioeconomic activity. The Deepwater Horizon blowout and subsequent advection of oil into coastal waters of the northern Gulf of Mexico (nGOM) highlighted the complex linkages among oceanographic processes within this river-dominated system and knowledge gaps about it that resulted in imprecise information on both oil transport and ecosystem consequences. The interdisciplinary research program implemented through the CONsortium for oil exposure pathways in COastal River-Dominated Ecosystems (CONCORDE) is designed to identify and quantitatively assess key physical, biological, and geochemical processes acting in the nGOM, in order to provide the foundation for implementation of a synthesis model (coupled circulation and biogeochemistry) of the nGOM shelf system that can ultimately aid in prediction of oil spill transport and impacts. CONCORDE field and modeling efforts in 2015–2016 focused on defining the influence of freshwater input from river plumes in the nGOM. In situ observations, combined with field-deployed and simulated drifters, show considerable variability in the spatial extent of freshwater influence that is related to wind direction and strength. Increased primary production and particle abundance (a proxy for secondary production) was observed during the spring when nGOM shelf waters were becoming stratified. Zooplankton and marine snow displayed intense vertical and horizontal patchiness during all seasons, often aggregating near the halocline. Simulations of a neutrally buoyant tracer released offshore of the Mississippi Bight showed surface advection of low tracer concentrations onto the inner shelf under high river discharge, high stratification, and variable wind conditions compared to almost no advection onto the inner shelf under low discharge, negligible stratification, and generally northeasterly winds. The interconnectedness of environmental variables and biological activity indicate that multiple factors can affect the transport of oil and the resulting ecological impacts. The process-oriented understanding provided by CONCORDE is necessary to predict ecosystem-level impacts of oil spills, and these results are applicable to other river-dominated coastal systems worldwide that often support oil extraction activities

    Differential In Vitro Effects of Intravenous versus Oral Formulations of Silibinin on the HCV Life Cycle and Inflammation

    Get PDF
    Silymarin prevents liver disease in many experimental rodent models, and is the most popular botanical medicine consumed by patients with hepatitis C. Silibinin is a major component of silymarin, consisting of the flavonolignans silybin A and silybin B, which are insoluble in aqueous solution. A chemically modified and soluble version of silibinin, SIL, has been shown to potently reduce hepatitis C virus (HCV) RNA levels in vivo when administered intravenously. Silymarin and silibinin inhibit HCV infection in cell culture by targeting multiple steps in the virus lifecycle. We tested the hepatoprotective profiles of SIL and silibinin in assays that measure antiviral and anti-inflammatory functions. Both mixtures inhibited fusion of HCV pseudoparticles (HCVpp) with fluorescent liposomes in a dose-dependent fashion. SIL inhibited 5 clinical genotype 1b isolates of NS5B RNA dependent RNA polymerase (RdRp) activity better than silibinin, with IC50 values of 40–85 Β΅M. The enhanced activity of SIL may have been in part due to inhibition of NS5B binding to RNA templates. However, inhibition of the RdRps by both mixtures plateaued at 43–73%, suggesting that the products are poor overall inhibitors of RdRp. Silibinin did not inhibit HCV replication in subgenomic genotype 1b or 2a replicon cell lines, but it did inhibit JFH-1 infection. In contrast, SIL inhibited 1b but not 2a subgenomic replicons and also inhibited JFH-1 infection. Both mixtures inhibited production of progeny virus particles. Silibinin but not SIL inhibited NF-ΞΊB- and IFN-B-dependent transcription in Huh7 cells. However, both mixtures inhibited T cell proliferation to similar degrees. These data underscore the differences and similarities between the intravenous and oral formulations of silibinin, which could influence the clinical effects of this mixture on patients with chronic liver diseases
    • …
    corecore