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Abstract

Background: Arachidonic acid is metabolized through three major metabolic pathways, the cyclooxygenase, lipoxygenase
and CYP450 enzyme systems. Unlike cyclooxygenase and lipoxygenases, the role of CYP450 epoxygenases in monocyte/
macrophage-mediated responses is not known.

Methodology/Principal Findings: When transfected in vitro, CYP2J2 is an efficient activator of anti-inflammatory pathways
through the nuclear receptor peroxisome proliferator-activated receptor (PPAR) a. Human monocytes and macrophages
contain PPARa and here we show they express the epoxygenases CYP2J2 and CYP2C8. Inhibition of constitutive monocyte
epoxygenases using the epoxygenase inhibitor SKF525A induces cyclooxygenase (COX)-2 expression and activity, and the
release of TNFa, and can be reversed by either add back of the endogenous epoxygenase products and PPARa ligand 11,12-
epoxyeicosatrienoic acid (EET) or the addition of the selective synthetic PPARa ligand GW7647. In alternatively activated (IL-
4-treated) monocytes, in contrast to classically activated cells, epoxygenase inhibition decreased TNFa release.
Epoxygenases can be pro-inflammatory via superoxide anion production. The suppression of TNFa by SKF525A in the
presence of IL-4 was associated with a reduction in superoxide anion generation and reproduced by the superoxide
dismutase MnCl2. Similar to these acute activation studies, in monocyte derived macrophages, epoxygenase inhibition
elevates M1 macrophage TNFa mRNA and further decreases M2 macrophage TNFa.

Conclusions/Significance: In conclusion, epoxygenase activity represents an important endogenous pathway which limits
monocyte activation. Moreover endogenous epoxygenases are immuno-modulators regulating monocyte/macrophage
activation depending on the underlying activation state.
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Introduction

Monocyte-derived macrophages play a critical role in host defence,

wound healing, repair and chronic inflammation [1]. Depending on

the stimuli monocytes can be differentiated to either a classically

activated pro-inflammatory M1 macrophage (e.g. by IFNc, TNFa or

bacterial LPS) or an alternatively activated M2 macrophage (M2; e.g.

by IL-4 or IL-13) which in general are associated with Th2 mediated

immune responses, promote the killing of parasites, and are present

during tissue repair, wound healing and remodelling [1].

Arachidonic acid is metabolised in to families of biologically

active mediators by cyclooxygenase (COX), lipoxygenase and

CYP450 pathways [2,3]. Unlike COX and lipoxygenase products,

the roles of CYP450 pathways in the immune response are poorly

understood. CYPs metabolise arachidonic acid by: i) epoxygenases

that catalyze arachidonic acid to epoxyeicosatrienoic acids (EETs);

ii) the lipoxygenase-like CYPs; and iii) the v- and v-1-hydroxylase

CYPs which produce hydroxyeicosatetraenoic acids.[3] These

CYP-lipid metabolizing enzymes are the primary sources of

eicosanoids in small blood vessels, the kidney, liver, lung,

intestines, heart, and pancreas [3,4]. The main arachidonic acid-

metabolising CYPs are members of the CYP2 family. Of this

larger family, the CYP2J and CYP2C sub families represent the

most important epoxygenases [3,4,5,6].

EETs can regulate vascular tone, smooth muscle cell mitogen-

esis, platelet aggregation, steroidogenesis and vascular inflamma-
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tion [4,6,7]. EETs have been hypothesized as endothelium-derived

hyperpolarizing factors, hyperpolarizing and relaxing vascular

smooth muscle cells by activating calcium-activated potassium

channels [5]. A number of the anti-inflammatory activities of

EETs and CYP2J2 in particular are independent of hyperpolar-

isation [8]. CYP2C9 increases NFkB activity in human vascular

endothelium [9], giving CYP2C9 a potential pro-inflammatory

profile. Indeed, in general, CYP2Cs have a propensity to uncouple

and produce reactive oxygen species whereas CYP2J isoforms do

not. The receptors for epoxygenase products are poorly under-

stood. We recently published that CYP2J2 and its anti-inflamma-

tory products are ligands for the peroxisome-proliferator activated

receptor (PPAR) class of nuclear receptors, in particular PPARa
[10]. PPARa is expressed in the vascular endothelium, vascular

smooth muscle cells, and monocyte/macrophages where, like

EETs, it can limit NFkB activation [11].

Over the last 10 years it has been recognized that endothelial

cells contain epoxygenases (in man CYP2J2, CYP2C8 and

CYP2C9), which regulate endothelial cell adhesion molecule

expression and inflammatory cell recruitment [4]. CYP2J2 in

particular has a number of vascular protective properties including

protection of hypoxia-reoxygenation endothelial injury [12],

decreased cytokine-induced cell adhesion molecule expression by

inhibition of NFkB [8], reduction of inflammatory cell recruitment

[13], and the reduction of hypertension and hypertension induced-

renal injury [14] and smooth muscle migration [15]. In contrast,

the expression and function of epoxygenases in monocytes is

poorly understood, even though it is known epoxygenase products

are produced by human macrophages [16] and bind to sites in

monocytes [17]. Our aims were to examine whether epoxygenases

played a immuno-modulatory role in monocyte macrophage

activity. We show endogenous epoxygenase activity limits

monocyte/macrophage activation when stimulated either in a

classical pro-inflammatory manner or with alternative activation.

Endogenous epoxygenases are therefore important immuno-

modulators regulating monocyte/macrophage activation depend-

ing on the manner of their activation.

Results

Transfected CYP2J2 activates anti-inflammatory
pathways through PPARa

We have recently shown that CYP2J2 and its products 8,9-EET

and 11,12-EET activate PPARa in vitro in HEK293 cells, and that

CYP2J2 augments PPARa signaling in vivo in the heart [10]. Here

we show CYP2J2 and PPARa co-transfection abolishes IL-1b
induced NFkB reporter gene activation (Figure 1A), or IL-1b and

PMA-induced COX-2 mRNA induction (Figure 1B) in HEK293

cells. Transfection with either CYP2J2 or PPARa reduced IL-1b-

induced NFkB activation, but both were required to abolish the

response (Cont 1.560.3; IL-1b 5.660.7; IL-1b+CYP2J2 3.360.5;

IL-1b+PPARa 3.360.4; IL-1b+CYP2J2+PPARa 1.560.2 fold

NFkB activation; CYP2J2 1.360.1 or PPARa 1.060.1 transfected

by themselves did not affect basal NFkB activation). The anti-

inflammatory effect of the combination of CYP2J2 activity and

PPARa activation could be reversed by either CYP2J2 inhibition

with 30 mM SKF525A (Figure 1A and 1B), PPARa inhibition by

the PPARa antagonist GW6471 (1 mM) or the presence of co-

transfected dominant-negative PPARa (Figure 1A). We previously

showed that SKF525A up to concentrations of 30 mM produced a

concentration-dependent inhibition of CYP2J2 induced PPAR

reporter gene activation [10]. In longer-term experiments however

(.24 h), 30 mM SKF525A reduced cell viability (assessed by MTT

assay), so 10 mM SKF525A, which had no significant effect on cell

viability under any of the conditions tested (data not shown) was

used in all the subsequent experiments.

The addition of the known products of CYP2J2, 8,9-EET or

11,12-EET (1 mM) strongly inhibited IL-1b-induced NFkB

reporter gene activity in the absence of PPARa (Figure 2). In

the presence of transfected PPARa, NFkB activity was abolished

using either 8,9-EET or 11,12-EET indicating that EETs may

have anti-inflammatory actions both dependent and independent

of PPARa (Figure 2).

Epoxygenase activity in monocytes constitutively limits
inflammatory activation in a manner sensitive to PPARa
ligands

CYP2J2 and CYP2C8 (but not CYP2C9) were expressed in

human THP-1 monocytes and human peripheral blood mono-

cytes (Figure 3). THP-1 cells produced low levels of the stable

epoxygenase products of arachidonic acid: 8,9-EET (8,9-DHET;

Figure 1. CYP2J2 has anti-inflammatory actions in vitro
through the activation of PPARa. (A) CYP2J2 and PPARa co-
transfection abolishes IL-1b (10 ng/ml; 18 h) induced NFkB reporter
gene activation. HEK293 cells were transfected with a NFkB-luciferase
reporter gene and combinations of expression plasmids for CYP2J2 and
PPARa, or control empty plasmid (pcDNA3.1). The CYP2J2-PPARa
mediated inhibition of IL-1b-induced NFkB activation is reversed by
SKF525A (30 mM), co-transfection with dominant negative (DN)-PPARa,
or a selective PPARa antagonist GW6471 (3 mM). *denotes p,0.05
between IL-1b and treatments, by one-way ANOVA and Bonferroni’s
post test. Data represents mean6SEM of n = 9 determinations from 3
separate experiments. (B) CYP2J2 and PPARa co-transfection abolishes
IL-1b (10 ng/ml) and PMA (1 nM) induced COX-2 mRNA expression
(24 h) determined by semi-quantitative RT-PCR. The abolishment of
COX-2 mRNA is reversed when cells are co-incubated with the
epoxygenase inhibitor SKF525A (30 mM). *denotes p,0.05 between
IL-1b + PMA induced COX-2 expression and the effect of treatments by
one-way ANOVA and Bonferroni’s post-test. Data represents mean 6
SEM of n = 9 determinations from 3 separate experiments.
doi:10.1371/journal.pone.0026591.g001
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2.060.3 pg/ml), and linoliec acid, 9,10-epoxy-octadecenoic acid

(EPOME) (9,10-dihydroxy-octadecenoic acid, 213.56111.8 pg/

ml) over 24 h. CYP2J2, CYP2C8 or CYP2C9 transcripts were not

detected in human PMNs (Figure 3A). Classical activation of

monocytes with IL-1b and PMA induced COX-2 protein in a

manner sensitive to inhibition by either the epoxygenase product

11,12-EET or the selective PPARa ligand GW7647 [18]

(Figure 4A and B). IL-1b alone in both HEK293 or THP-1 cells

was insufficient to reproducibly induce COX-2, however the

combination of IL-1b with PMA gave a consistent reproducible

induction of both COX-2 mRNA and protein. Surprisingly, in the

absence of additional stimuli, epoxygenase inhibition using SKF525A

alone greatly induced COX-2 protein in THP-1 (Figure 4C and D),

which could be reversed by PPARa activation. Similarly, SKF525A

induced PGD2 release (Figure 4E) and TNFa release (Figure 4G). In

addition, the selective PPARa antagonist GW6471 (10 mM) induced

PGD2 and TNFa release (Figure 4E and 4G), or the cPLA2 inhibitor

AACOCF3 (30 mM; Figure 4G) induced TNFa release similar to

SKF525A. The cPLA2 inhibitor was not tested for PGD2 release as it

would directly inhibit PGD2 synthesis independent of any effect on

EET generation. Although, the level of COX-2 protein induced by

epoxygenase inhibition was similar to IL-1b and PMA stimulation,

the level of PGD2 released were significantly greater with IL-1b and

PMA stimulation (Figure 4F). In addition to inflammatory pathways,

epoxygenase inhibition also increased the uptake of Dil-labeled

acetylated-LDL in a manner sensitive to inhibition with GW7647

(Figure S1). In THP-1 cells, no uptake was observed until the

monocytes had been activated with 1 nM PMA for 24 h, before

treatment with SKF525A.

Epoxygenase activity differentially regulates alternatively
activated monocytes and macrophages

THP-1 monocytes treated with the alternative activator of

monocytes IL-4 (20 ng/ml) exhibited a small reduction in TNFa
release over 7 h (Figure 5A). In cells treated with IL-4 and the

epoxygenase inhibitor SKF525A (10 mM), TNFa release was

further reduced (Figure 5), suggesting that epoxygenases are

immuno-modulators depending on the underlying activation state

of the monocyte. Similar results were found for COX-2 (and TNFa)

mRNA levels (Figure S2A and B). Under basal cell culture

conditions 11,12-EET and 8,9-EET strongly inhibited TNFa
release. In contrast, in the presence of IL-4 and SKF525A, although

11,12-EET retained its inhibitory activity, 8,9-EET elevated TNFa
levels (Figure 5B), suggesting a shift in the cells ability to sense this

anti-inflammatory EET. A change in the sensitivity to an anti-

inflammatory EET may therefore help to explain this pro-

inflammatory action of IL-4 under these conditions.

Moreover, since epoxygenases can activate pro-inflammatory

pathways via superoxide generation [9], we monitored superoxide

generation and compared SKF525A responses to that of the

superoxide dismutase compound MnCl2 [19]. MnCl2 (10 mM)

identical to epoxygenase inhibition decreased TNFa release in the

presence but not absence of IL-4 (Figure 5A), showing that

superoxide anion generation from epoxygenases can account for

the reduction in TNFa release under conditions of alternative

activation. Superoxide generation was increased in both IL-4

(20 ng/ml) and SKF525 (10 mM) treated cells, the combination of

IL-4 with SKF525 however showed no significant increase of

superoxide generation over control treated cells (Figure 5C).

We differentiated human peripheral blood monocytes in to M1

and M2 macrophages with LPS (1 ng/ml) and IFNc (20 ng/ml),

or with IL-4 respectively, in the presence or absence of SKF525A

(10 mM) for 7 days (Figure 6). M1 macrophages were character-

ized by high transcript levels of COX-2 and TNFa, and low levels

of DC-SIGN (Figure 6A), in contrast M2 macrophages showed no

COX-2 expression, lower levels of TNFa, but high levels of the

M2 marker DC-SIGN (Figure 6A). M1 and M2 macrophages

expressed CYP2J2 and CYP2C8 mRNA. In addition, CYP2C9

Figure 2. Epoxygenase products inhibit NFkB activation
through PPARa-dependent manner and independent path-
ways. Exogenous EETs inhibit IL-1b-induced NFkB independently of
PPARa, HEK293 cells were transfected with a NFkB-luciferase reporter
gene with either an expression plasmid for PPARa, or control empty
plasmid (pcDNA3.1). 8,9-EET and 11,12-EET (1 mM) inhibit IL-1b induced
NFkB reporter gene in the presence and absence of co-transfected
PPARa. *denotes p,0.05 between IL-1b and treatments, by one-way
ANOVA and Bonferroni’s post test. Data represents mean 6 SEM of
n = 9 determinations from 3 separate experiments.
doi:10.1371/journal.pone.0026591.g002

Figure 3. Human monocytes contain epoxygenases CYP2J2
and CYP2C8. (A) CYP2J2 and CYP2C8 mRNA determined by RT-PCR
are expressed in human peripheral leukocytes (Lk), monocytes (Mc) and
the THP-1 cell line, but not polymorphonuclear cells (PMNs).
Confirmation of CYP2J2 protein in human monocytes and THP-1 cells
was performed by western blotting. (B) HEK293 cells transfected with
empty vector (-) compared to HEK293 cells transfected with expression
plasmid for CYP2J2 (+) was used as a positive control. (C) CYP2J2
protein in human THP-1 cells and monocytes (Mc). Figures are
representative of n = 324 independent experiments.
doi:10.1371/journal.pone.0026591.g003
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mRNAs were also detected in two cultures of M2 macrophages

(Figure 6B). In experiments where SKF525A was included during

the differentiation process, identical to our findings in monocytes,

M1 macrophages had increased TNFa mRNA (Figure 6C and D),

while M2 macrophages had significantly reduced TNFa mRNA

levels (Figure 6E and 6F). TNFa release by ELISA could not be

accurately measured in M1 and M2 macrophages due to low and

variable cell numbers. We therefore measured TNFa release in

THP-1 cells treated with M1 and M2 differentiation medium for 7

days. In these experiments, SKF525A treatment was only given for

a 7 h period at the end of the experiment and not throughout.

SKF525A did not affect the release of TNFa in M1-THP-1 cells

(Figure 6D), but greatly reduced the release of TNFa by M2-THP-

1 cells (Figure 6F). The absolute levels of TNFa release were less in

M1 compared to M2-THP-1 cells due to a large reduction in cell

viability with the M1 differentiation conditions. SKF525A at this

7 h time point did not however effect cell viability in either M1 or

M2 differentiated cells.

Discussion

The roles of epoxygenase pathways in monocytes and

macrophages remain poorly understood. Here we show endoge-

nous epoxygenases provide a critical endogenous break on

monocyte/macrophage cell inflammatory pathway activation

under resting conditions and when activated to differentiate to

the M1 phenotype. We choose to use the non-specific epoxygenase

inhibitor SKF525A as there are at least 2 epoxygenases present

and we wanted to ensure we had a complete inhibition of these

epoxygenases. PPARa, CYP2J2 and EETs have all been shown

independently to have anti-inflammatory properties, at least in

part by inhibition of NFkB. Consistent with our previous findings

that co-transfected CYP2J2 inhibited NFkB through providing

ligands for PPARa [20], here we show that the NFkB downstream

inflammatory targets COX-2 and TNFa are similarly regulated.

Epoxygenase products, which we previously showed capable of

activating PPARa [10], inhibited NFkB activation in the absence

Figure 4. Epoxygenase inhibition induces pro-inflammatory signals in human and murine monocytes in vitro. (A and B) COX-2 protein
induced in THP-1 cells by a combination of IL-1b (10 ng/ml) and PMA (1 nM) for 24 h is inhibited by co-incubation with either (A) 11,12-EET (1 mM) or
(B) the selective PPARa ligand GW7647 (10 nM). b-actin was measured to ensure equal loading of proteins. Data is representative of n = 3 separate
experiments. (C and D) Epoxygenase blockade alone is sufficient to induce COX-2 in THP-1 monocytes. (C) SKF525A 0.1–10 mM gives a concentration-
dependent induction of COX-2 protein. Data is representative of n = 4 separate experiments. (D) Epoxygenase blockade induces COX-2 in THP-1 cells
which is reversed by the selective PPARa agonist GW7647 (10 nM). Compared to the established pro-inflammatory combination of IL-1b and PMA
(used at optimal concentrations for COX-2 induction), SKF525A gives a robust induction of COX-2. Data represents mean 6 SEM of n = 4 separate
experiments. *denotes p,0.05, by one-sample t-test treatments compared to untreated cells. (E) The COX derived prostanoid PGD2 is also induced in
THP-1 cells by epoxygenase (SKF525A 10 mM) or PPARa blockade (GW6471 10 mM) or (F) a combination of IL-1b (10 ng/ml) and PMA (1 nM) for 24 h.
(G) Similarly, TNFa is induced in THP-1 cells by epoxygenase (SKF525A 10 mM), PPARa blockade (GW6471 10 mM) or cPLA2 (AACOCF3 30 mM)
inhibition over 24 h. *denotes p,0.05 by Wilcoxon signed rank test treatments compared to untreated cells.
doi:10.1371/journal.pone.0026591.g004
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of transfected PPARa. Although the inhibition of NFkB by these

EETs was complete when PPARa was present, since our HEK293

cells do not contain any significant level of basal PPAR activity

[10], these results suggest that anti-inflammatory EETs can act

through both PPAR-dependent and PPAR-independent pathways.

Recently epoxygenases and their products were shown to regulate

inflammation at the level of the endothelial cell neutrophil

interactions [13]. Although PPARc has also been suggested as

an anti-inflammatory target for endothelial epoxygenases [21,22],

the reduction of pro-inflammatory cytokines induced by epox-

ygenases were reversed by the putative EET antagonist 14,15-

EEZE [13]. It must be noted however that 14,15-EEZE does not

have pure antagonist properties [23], and has yet to be tested on

the regulation of PPAR responses. One additional potential anti-

inflammatory mechanism for EETs is via cAMP generation. This

does not appear to be the case here as SKF525A had no affect on

cAMP levels in THP-1 cells, at least after 7 h of treatment (Fig

S2C).

Monocytes and macrophages contain PPARa [24] and here we

show they express CYP2J2 and CYP2C8, and release low levels of

epoxygenase products of arachidonic acid, and linoleic acid.

Interestingly, the stable levels of EETs release were much lower

than the levels of the linoleic acid product 9,10-EPOME. As yet

we don’t understand the importance of these alternative

epoxygenase fatty acid products in monocytes, but in our hands

9,10-EPOME does not have anti-inflammatory properties similar

to 11,12-EET as it does not inhibit basal TNFa release from THP-

1 cells (Fig S2D). PPARa knockout monocyte/macrophages exist

in a highly inflammatory state producing large amounts of

thrombospondin-1 and inhibiting tumor growth [25]. Inhibition

of monocyte epoxygenases using SKF525A strongly induced the

NFkB target genes COX-2 and TNFa, consistent with our in vitro

co-transfection studies. Indeed, inhibition of either epoxygenases,

or PPARa using the selective antagonist GW6471 induced

prostanoid release, or along with a cPLA2 inhibitor AACOCF3,

induced TNFa release to a similar extent, indicating that

inhibiting any of the components of a proposed pathway: cPLA2

- arachidonic acid - epoxygenase - EET - PPARa, results in a

similar monocyte activation. The increased expression of COX-2

was sensitive to inhibition by 11,12-EET (the EET we previously

described with the greatest potency to activate PPARa) or the

highly selective PPARa ligand GW7647 [18]. These results show

that epoxygenases supply a continuous anti-inflammatory tone in

monocytes at least in part by producing PPARa ligands.

It has been recently reported that CYP2J2 was absent in human

leukocytes, but present at high levels in malignant hematological

(lymphocytic) cell lines and in leukemia cells from peripheral blood

and bone marrow in patients with malignant hematologic diseases

[26]. Although we found CYP2J2 and CYP2C8 mRNA in human

total leukocytes, lymphocyte and monocyte fractions (but not

PMNs), the levels of mRNA were consistently lower than those

found in our THP-1 cells (a human acute monocytic leukemia cell

Figure 5. Epoxygenase inhibition in alternatively activated monocytes inhibits TNFa release: a role for superoxide generation. (A)
shows the acute release of TNFa from THP-1 cells over 7 h with vehicle treatment (Cont), or treated with SKF525A (10 mM), IL-4 (20 ng/ml), the
superoxide dismutase, MnCl2 (10 mM) or a combination of IL-4 and SKF525A or IL-4 and MnCL2. (B) shows inhibition of basal TNFa release from THP-1
cells treated with 11,12-EET or 8,9-EET (1 mM) in the presence of absence of SKF (10 mM) with IL-4 (20 ng/ml). Data represents mean 6 SEM of n = 3
experiments. * indicates EET difference from control, while { indicates EET difference from IL-4 with SKF525A. (C) shows the production of superoxide
(left figure; arbitrary units), or representative florescent micrographs (right panels), from THP-1 cells treated for 7 h with vehicle treatment (Cont),
SKF525A (10 mM), IL-4 (20 ng/ml), or a combination of IL-4 and SKF525A. The superoxide sensor, dihydroethidium (10 mM) was added for the last
30 min and staining intensity analyzed using a Nikon TE2000 inverted florescent microscope connected to a SPOT-RT digital camera. Data represents
mean 6 SEM of n = 324 experiments. *denotes p,0.05, by one-way ANOVA and Bonferroni’s post-test compared to control cells.
doi:10.1371/journal.pone.0026591.g005
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line). The high levels of CYP2J2 in these cancers may help to

explain some of the poor immunological function of these cells,

and may point to the presence of a high degree of continuous

immuno-suppression through this pathway.

In contrast, when alternatively activated by IL-4, concurrent

epoxygenase inhibition instead of elevating TNFa suppressed

TNFa release and TNFa mRNA expression in THP-1 monocytes

or M2 macrophages respectively. Similar results were found with

COX-2 in THP-1 monocytes: however, there was no basal level of

COX-2 in M2 macrophages to modulate. These results show that

under alternative activation, epoxygenases have a pro-inflamma-

tory activity. Interestingly, IL-4 with SKF525A changed the

actions of the epoxygenase product 8,9-EET when given

exogenously. Under basal conditions 8,9-EET inhibited TNFa
release, while in the presence of IL-4 and SKF525A it elevated

TNFa levels. These intriguing results point to a new pro-

inflammatory EET pathway in monocytes sensitized by IL-4

which is specific to 8,9-EET, as 11,12-EET was unaffected. The

Figure 6. Epoxygenase inhibition differentially regulates the release of TNFa from M1 and M2 macrophages. (A) Differentiation of
human peripheral blood mononuclear cells for 7d with either LPS (1 ng/ml) and IFNc (20 ng/ml; M1) or IL-4 (20 ng/ml; M2) induces a characteristic
pattern of M1 (high COX-2, high TNFa, low DC-SIGN) and M2 (low COX-2, low TNFa and high DC-SIGN) macrophage differentiation. Markers were
measured by RT-PCR compared to b-actin. (B) CYP2J2 and CYP2C8 mRNA are expressed in M1 and M2 macrophages. In addition CYP2C9 is expressed
in (2 out of 4) macrophages. Blots are representative of n = 4 independent experiments. (C-F) TNFa mRNA (top) and protein (lower panels) is
differentially regulated in M1 (C and D): primary M1 macrophages (C) and M1-THP-1-macrophages (D), and M2 (E and F): primary M2 macrophages (E),
and M2-THP-1 (F) macrophages treated with SKF525A (10 mM). Monocytes were placed in differentiation medium containing vehicle or SKF525A for
7d. M1 and M2-THP-1 cells were identically treated with M1 or M2 differentiation media, however in these experiments, SKF525A (10 mM) was given
to fully differentiated cells at the end of the experiment on day 7 for a further 7 h. The relative TNFa mRNA compared to b-actin levels was measured
by RT-PCR. TNFa release was determined by ELISA. *denotes p,0.05, by one-sample t-test compared to untreated cells.
doi:10.1371/journal.pone.0026591.g006

Monocyte/Macrophage Epoxygenases
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best characterized pro-inflammatory activity of epoxygenases is

however, through the production superoxide anion [9]. In our

experiments TNFa release was suppressed by epoxygenase

inhibition with SKF525A, to the same extent as with removal of

superoxide by the superoxide dismutase MnCl2 [19]. Whether this

is accompanied by a change in anti-inflammatory EET signaling is

not clear. Intriguingly, the M2 phenotype was accompanied by an

induction of CYP2C9 mRNA, the epoxygenase best characterized

as a superoxide generator. SKF525A or IL-4 induced superoxide

generation in THP-1 monocytes, however the combination of

SKF525A and IL-4 showed no increase in superoxide anion

production. These results suggest that IL-4 induces a switch in the

profile of epoxygenase activity to a pro-inflammatory superoxide

generating system. Although IL-4 is generally considered anti-

inflammatory, IL-4 has previously reported to increase as well as

decrease both superoxide anion generation [27,28] and NFkB

activation [29,30] in monocytes depending on the underlying

stimulation.

Our results show an epoxygenase–PPARa axis provides a

critical endogenous break on monocyte/macrophage during

classical activation. This inflammatory breaking signal therefore

represents a novel regulatory mechanism in monocyte/macro-

phages that may regulate disease progression [31,32]. During

alternative activation endogenous epoxygenases limited the anti-

inflammatory activity of IL-4 via superoxide generation, and

potentially by changing the monocyte/macrophage sensitivity to

EETs, highlighting a novel additional immunoregulatory role for

epoxygenases during Th2 mediated immune responses.

Methods

Ethics Statement
Ethics to take blood samples from healthy volunteers were

approved by the St Thomas’s Hospital Research Ethics Commit-

tee (07/Q0702/24), and conducted according to the Declaration

of Helsinki. All volunteers gave written informed consent prior to

entering the study.

Materials
NFkB-luc reporter plasmid was from Clontech (Takara Bio

Europe/Clontech, Saint-Germain-en-Laye, France). Rabbit poly-

clonal anti-CYP2J2 was raised as previously described [33].

pCMXmPPARa and dominant negative DN-(h6/29) hPPARa
were gifts from Dr Ruth Roberts (AstraZeneca; Maccelsfield,

U.K.). EETs and the PGD2 ELISA were from Cayman Chemical

Company (Cambridge Bioscience, Cambridge, UK). SKF525A

was from Biomol (Affiniti Research Products, Exeter, UK).

NovaFECTOR was from VennNova (Pompano Beach, FL,

USA). Dihydroethidium and Dil labelled acetylated-(ac)-LDL

conjugate was from InVitrogen (Paisley, Renfrewshire, UK).

cAMP HTRF assay was from Cisbio (Codolet, France). ECL

reagents, hyperfilm were from GE Healthcare (Little Chalfont,

Buckinghamshire, UK). Cytokines were from R&D Systems

(Abingdon, Oxfordshire, UK). Unless stated, all other reagents

were from Sigma-Aldrich (Poole, Dorset, UK).

Cell and tissue culture
HEK293 (ATCC; LGC Standards, Middlesex, UK) were

cultured in DMEM, and THP-1 were cultured in RPMI

supplemented with antibiotic/antimycotic mix, and 10% FBS;

37uC; 5% CO2; 95% air. Primary monocytes were isolated from

peripheral blood of human volunteers as previously described [34].

Four million cells per well were left to adhere to the culture plastic

for 1.5 hr at which point non-adherent cells were discarded. M1

and M2 differentiation was achieved by stimulation of the adhered

monocytes or PMA treated THP-1 cells with 1 ng/mL LPS (E. coli

serotype 026:B6) and 20 ng/mL IFNc for the M1 phenotype and

20 ng/ml IL-4 for the M2 phenotype for four days. The

concentrations of the cytokines for M1 and M2 differentiations

were selected from two publications [35,36].

Cell morphology, dihydroethidium staining (10 mM for 30 min

at the end of the experiment) [37] and Dil-acLDL uptake (5 mg/ml

for 24–72 h) was analyzed using a Nikon TE2000 inverted

florescent microscope connected to a SPOT-RT digital camera.

The figures shown were created from unmodified images from 2–6

random low magnification fields (x200), analyzed for mean

florescent intensity using ImageJ image analysis software (http://

rsb.info.nih.gov/ij/). The photo-images shown for the purposes of

clarity have been modified in an identical manner in Powerpoint

(contrast and brightness). Luciferase assays were performed as

previously described [38].

RT-PCR
Cell and tissue samples analyzed by RT-PCR were lysed and

RNA isolated using TrizolTM (Invitrogen). Human b-actin [39]

and COX-2 [40] were as previously described. Human TNF-

alpha gene forward primer 59-CAG AGG GCC TGT ACC TCA

TC-39 and reverse primer 59-GGA AGA CCC CTC CCA GAT

AG-39 producing a 218-bp fragment. DC-SIGN, forward primer:

59-AGT GGG TGA GCT TCC AGA GA-39 and reverse primer

59-CTA AAT TCC GCG CAG TCT TC-39 producing a 405-bp

fragment. CYP2J2, forward primer 59-GCC CGG GAG TCC

ATG CCC TA-39 and reverse primer 59-AAC AGC GCA GAG

GCG GTG AC-39 producing a 435-bp fragment. CYP2C8,

forward primer 59-CGG TGT GCC CCA TGC AGT GA-39and

reverse primer AGA TCG GCA GCC AGA TGG GC-39

producing a 411-bp fragment. CYP2C9, forward primer ATT

GAC CTT CTC CCC ACC AGC-39 and reverse primer GCA

AAT CCA TTG ACA ACT GGA GT producing a 355-bp

fragment. Amplification was performed in a Techgene Techne

TC-312 thermal cycler programmed for an initial denaturation of

5 min at 94uC, followed by 25–35 cycles of 1 min at 94uC, 1 min

at 57–60uC and 2 min at 72uC, and a final extension of 7 min at

72uC. 12 ml of the PCR reaction was subjected to electrophoresis

on 1.5% agarose gel and the products visualized by ethidium

bromide staining. The gel image was captured with a Gel doc

1000 BIORAD digital camera.

Western Blotting, immunoassays, and EET measurements
CYP2J2, COX-2, PPARa, and b-actin protein levels were

measured as previously described [33,38]. CYP2J2 antibody cross-

reacts with CYP2J subfamily enzymes but not other isoforms [33].

The intensity of the bands was digitalized, analyzed and quantified

with the Image J Software Package (NIH). TNFa, PGD2 ELISAs

and cAMP HTRF assays were performed according to manufac-

turer’s instructions. LC/MS/MS analysis of epoxygenase products

in culture supernatants were measured as previously described

[41].

Supporting Information

Figure S1 Epoxygenase inhibition increase macrophage
lipid uptake. SKF525A treatment (10 mM; 72 h) increases the

uptake of DiL-acetylated LDL which is inhibited if co-treated with

the selective PPARa ligand GW7647 (100 nM). Cells were initially

pre-treated with PMA (5 nM) for 24 h. Left panels show

representative micrographs (x400) of ac-LDL uptake, figure shows
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densometric analysis (Image J) of ac-LDL uptake represented as

mean 6 SEM of n = 4 experiments.

(PDF)

Figure S2 (A & B) shows COX-2 mRNA (C) and TNFa
mRNA (D) relative to b-actin in THP-1 cells treated with
vehicle (Cont), or treated with SKF525A (10 mM), IL-4
(20 ng/ml or IL-4 with SKF525A for 7 h. Data represents

mean 6 SEM of n = 4 experiments. * indicates p,0.05; one way

ANOVA compared to control. (C) Intracellular cAMP levels (pg/

ml) are unchanged in THP-1 cells treated with vehicle control

(Cont) or SKF525A (10 mM) for 7 h. (D) Shows the comparison of

inhibition of basal TNFa release from THP-1 cells treated with

1 mM of 11,12-EET or 9,10-EPOME. Data represents mean 6

SEM of n = 3 experiments.

(PDF)
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