41,352 research outputs found
On the Running of the Cosmological Constant in Quantum General Relativity
We present arguments that show what the running of the cosmological constant
means when quantum general relativity is formulated following the prescription
developed by Feynman.Comment: 5 page
Hydrodynamics of photoionized columns in the Eagle Nebula, M 16
We present hydrodynamical simulations of the formation, structure and
evolution of photoionized columns, with parameters based on those observed in
the Eagle Nebula. On the basis of these simulations we argue that there is no
unequivocal evidence that the dense neutral clumps at heads of the columns were
cores in the pre-existing molecular cloud. In our simulations, a variety of
initial conditions leads to the formation and maintenance of near-equilibrium
columns. Therefore, it is likely that narrow columns will often occur in
regions with large-scale inhomogeneities, but that observations of such columns
can tell us little about the processes by which they formed. The manner in
which the columns in our simulations develop suggests that their evolution may
result in extended sequences of radiation-induced star formation.Comment: 12 pages, 9 figures, Latex, MN macros, in press with MNRA
Spinor algebra and null solutions of the wave equation
In this paper we exploit the ideas and formalisms of twistor theory, to show
how, on Minkowski space, given a null solution of the wave equation, there are
precisely two null directions in , at least one of which is a
shear-free ray congruence
Rethinking the bloody code in eighteenth-century Britain: Capital punishmentat the centre and onthe periphery
This is the author accepted manuscript. The final version is available from OUP via the DOI in this recordWe are very grateful to the Wellcome Trust for their extremely generous support of
the project Harnessing the Power of the Criminal Corpse (grant no. 095904/Z/11/Z),
from which this article was researched and written
Resummed Quantum Gravity
We present the current status of the a new approach to quantum general
relativity based on the exact resummation of its perturbative series as that
series was formulated by Feynman. We show that the resummed theory is UV finite
and we present some phenomenological applications as well.Comment: 4 pages, 1 figure; presented at ICHEP0
Quantum Corrections to Newton's Law
We present a new approach to quantum gravity starting from Feynman's
formulation for the simplest example, that of a scalar field as the
representative matter. We show that we extend his treatment to a calculable
framework using resummation techniques already well-tested in other problems.
Phenomenological consequences for Newton's law are described.Comment: 7 pages, 1 figure; improved fig., refs;improved discussion;more
discussion; proo
Psychological Issues in Online Adaptive Task Allocation
Adaptive aiding is an idea that offers potential for improvement over many current approaches to aiding in human-computer systems. The expected return of tailoring the system to fit the user could be in the form of improved system performance and/or increased user satisfaction. Issues such as the manner in which information is shared between human and computer, the appropriate division of labor between them, and the level of autonomy of the aid are explored. A simulated visual search task was developed. Subjects are required to identify targets in a moving display while performing a compensatory sub-critical tracking task. By manipulating characteristics of the situation such as imposed task-related workload and effort required to communicate with the computer, it is possible to create conditions in which interaction with the computer would be more or less desirable. The results of preliminary research using this experimental scenario are presented, and future directions for this research effort are discussed
Leveraging legacy codes to distributed problem solving environments: A web service approach
This paper describes techniques used to leverage high performance legacy codes as CORBA components to a distributed problem solving environment. It first briefly introduces the software architecture adopted by the environment. Then it presents a CORBA oriented wrapper generator (COWG) which can be used to automatically wrap high performance legacy codes as CORBA components. Two legacy codes have been wrapped with COWG. One is an MPI-based molecular dynamic simulation (MDS) code, the other is a finite element based computational fluid dynamics (CFD) code for simulating incompressible Navier-Stokes flows. Performance comparisons between runs of the MDS CORBA component and the original MDS legacy code on a cluster of workstations and on a parallel computer are also presented. Wrapped as CORBA components, these legacy codes can be reused in a distributed computing environment. The first case shows that high performance can be maintained with the wrapped MDS component. The second case shows that a Web user can submit a task to the wrapped CFD component through a Web page without knowing the exact implementation of the component. In this way, a userâs desktop computing environment can be extended to a high performance computing environment using a cluster of workstations or a parallel computer
- âŠ