1,959 research outputs found

    A single system account of enhanced recognition memory in synaesthesia

    Get PDF
    Researchers often adjudicate between models of memory according to the models’ ability to explain impaired patterns of performance (e.g. in amnesia). In contrast, evidence from special groups with enhanced memory is very rarely considered. Here, we explored how people with unusual perceptual experiences (synaesthesia) perform on various measures of memory and test how computational models of memory may account for their enhanced performance. We contrasted direct and indirect measures of memory (i.e. recognition memory, repetition priming, and fluency) in grapheme-colour synaesthetes and controls using a Continuous Identification with Recognition (CID-R) paradigm. Synaesthetes outperformed controls on recognition memory and showed a different reaction time pattern for identification. The data were most parsimoniously accounted for by a single-system computational model of the relationship between recognition and identification. Overall, the findings speak in favour of enhanced processing as an explanation for the memory advantage in synaesthesia. In general, our results show how synaesthesia can be used as an effective tool to study how individual differences in perception affect cognitive functions

    Research Knowledge of Advanced Standing and Traditional Students: Implications for BSW Education

    Get PDF
    The advanced standing model of social work education, which affords graduate credit to qualified BSW students who pursue their MSW, has not been without issue or controversy, including questions of potential differences in performance on various educational outcomes. Specifically related to research curriculum, the importance of which is often not wholly embraced by students, this article reports the results of a secondary data analysis comparing research knowledge among advanced standing and traditional MSW students as well as among the various undergraduate majors (i.e., BSW, psychology, and sociology). Results suggest that research knowledge is similar and low across student subgroups. Important differences in research knowledge were found among student groups based on undergraduate major, with BSW undergraduates without advanced standing, on average, scoring lower than any other group. Implications for BSW research curriculum are considere

    Transgranular Stress Corrosion Cracking of 304L Stainless Steel Pipe Clamps in Direct Use Geothermal Water Heating Applications

    Get PDF
    Direct use geothermal heating relies on heat extracted from naturally occurring geothermal water sources to provide heating needs for commercial and residential use. The city of Boise, Idaho maintains the largest district geothermal heating system in the United States, utilizing a source of geothermal water at 80 °C. 304 Stainless steel (UNS S30400) pipe clamps are used throughout the system as repair seals and for new service connections. Occasionally unexpected fracture of the stainless steel clamps occurs with time-in-service periods as short as 1 year. A failure analysis was conducted, including visual, microstructural, compositional, and mechanical characterization, to determine the cause and source of the degradation. Cracking of the clamps was limited to localized regions with the remainder of the clamp unaffected. Branched, brittle cracks were observed in the failure region and exhibited transgranular propagation. Based on the temperature, available moisture, stress level, and type of material used it was determined that the likely cause of failure was neutral pH, dilute chloride-induced stress corrosion cracking. Based on this failure analysis, geothermal or other buried heated water systems must consider protective measures or more SCC-resistant materials to prevent susceptible conditions from developing, compared to conventional water systems, to ensure maximum lifetime performance

    The Role of Galactic Winds on Molecular Gas Emission from Galaxy Mergers

    Full text link
    We assess the impact of starburst and AGN feedback-driven winds on the CO emission from galaxy mergers, and, in particular, search for signatures of these winds in the simulated CO morphologies and emission line profiles. We do so by combining a 3D non-LTE molecular line radiative transfer code with smoothed particle hydrodynamics (SPH) simulations of galaxy mergers that include prescriptions for star formation, black hole growth, a multiphase interstellar medium (ISM), and the winds associated with star formation and black hole growth. Our main results are: (1) Galactic winds can drive outflows of masses ~10^8-10^9 Msun which may be imaged via CO emission line mapping. (2) AGN feedback-driven winds are able to drive imageable CO outflows for longer periods of time than starburst-driven winds owing to the greater amount of energy imparted to the ISM by AGN feedback compared to star formation. (3) Galactic winds can control the spatial extent of the CO emission in post-merger galaxies, and may serve as a physical motivation for the sub-kiloparsec scale CO emission radii observed in local advanced mergers. (4) Secondary emission peaks at velocities greater than the circular velocity are seen in the CO emission lines in all models. In models with winds, these high velocity peaks are seen to preferentially correspond to outflowing gas entrained in winds, which is not the case in the model without winds. The high velocity peaks seen in models without winds are typically confined to velocity offsets (from the systemic) < 1.7 times the circular velocity, whereas the models with AGN feedback-driven winds can drive high velocity peaks to ~2.5 times the circular velocity.Comment: Accepted by ApJ; Minor revisions; Resolution tests include

    Impact of PNKP mutations associated with microcephaly, seizures and developmental delay on enzyme activity and DNA strand break repair

    Get PDF
    Microcephaly with early-onset, intractable seizures and developmental delay (MCSZ) is a hereditary disease caused by mutations in polynucleotide kinase/phosphatase (PNKP), a DNA strand break repair protein with DNA 5'-kinase and DNA 3'-phosphatase activity. To investigate the molecular basis of this disease, we examined the impact of MCSZ mutations on PNKP activity in vitro and in cells. Three of the four mutations currently associated with MCSZ greatly reduce or ablate DNA kinase activity of recombinant PNKP at 30°C (L176F, T424Gfs48X and exon15Δfs4X), but only one of these mutations reduces DNA phosphatase activity under the same conditions (L176F). The fourth mutation (E326K) has little impact on either DNA kinase or DNA phosphatase activity at 30°C, but is less stable than the wild-type enzyme at physiological temperature. Critically, all of the MCSZ mutations identified to date result in ∼10-fold reduced cellular levels of PNKP protein, and reduced rates of chromosomal DNA strand break repair. Together, these data suggest that all four known MCSZ mutations reduce the cellular stability and level of PNKP protein, with three mutations likely ablating cellular DNA 5'-kinase activity and all of the mutations greatly reducing cellular DNA 3'-phosphatase activity

    Pickleball for Inactive Mid-Life and Older Adults in Rural Utah: A Feasibility Study

    Get PDF
    Many diseases, disabilities, and mental health conditions associated with aging can be delayed or prevented through regular exercise. Several barriers to exercise, many of which are exacerbated in rural communities, prevent mid-life and older adults from accessing its benefits. However, recently, a racquet sport named pickleball has become popular among older adults, and it appears to overcome some of these barriers. We conducted a feasibility study to evaluate the impact of a six-week pickleball intervention on measures of muscle function, cognitive function, perceived pain, and cardio-metabolic risk, as well as several psychosocial factors contributing to adherence in sedentary rural participants. Participants improved their vertical jump, cognitive performance, and reported a decrease in self-reported pain, suggesting improved physical and cognitive health across the sample. Participants also reported high levels of satisfaction and demonstrated good adherence over the duration of the study. Perhaps of greatest value was the overwhelmingly positive response from participants to the intervention and follow-up interviews reporting a desire to continue pickleball play beyond the study period. Overall, pickleball appears to be a promising intervention to, (1) elicit functional- and cognitive-related improvements, and (2) motivate mid-life and older adults to adhere to exercise sufficiently long to benefit their health

    Lessons from dynamic cadaver and invasive bone pin studies: do we know how the foot really moves during gait?

    Get PDF
    Background: This paper provides a summary of a Keynote lecture delivered at the 2009 Australasian Podiatry Conference. The aim of the paper is to review recent research that has adopted dynamic cadaver and invasive kinematics research approaches to better understand foot and ankle kinematics during gait. It is not intended to systematically cover all literature related to foot and ankle kinematics (such as research using surface mounted markers). Since the paper is based on a keynote presentation its focuses on the authors own experiences and work in the main, drawing on the work of others where appropriate Methods: Two approaches to the problem of accessing and measuring the kinematics of individual anatomical structures in the foot have been taken, (i) static and dynamic cadaver models, and (ii) invasive in-vivo research. Cadaver models offer the advantage that there is complete access to all the tissues of the foot, but the cadaver must be manipulated and loaded in a manner which replicates how the foot would have performed when in-vivo. The key value of invasive in-vivo foot kinematics research is the validity of the description of foot kinematics, but the key difficulty is how generalisable this data is to the wider population. Results: Through these techniques a great deal has been learnt. We better understand the valuable contribution mid and forefoot joints make to foot biomechanics, and how the ankle and subtalar joints can have almost comparable roles. Variation between people in foot kinematics is high and normal. This includes variation in how specific joints move and how combinations of joints move. The foot continues to demonstrate its flexibility in enabling us to get from A to B via a large number of different kinematic solutions. Conclusion: Rather than continue to apply a poorly founded model of foot type whose basis is to make all feet meet criteria for the mechanical 'ideal' or 'normal' foot, we should embrace variation between feet and identify it as an opportunity to develop patient-specific clinical models of foot function

    Determining level of care appropriateness in the patient journey from acute care to rehabilitation

    Get PDF
    Background: The selection of patients for rehabilitation, and the timing of transfer from acute care, are important clinical decisions that impact on care quality and patient flow. This paper reports utilization review data on inpatients in acute care with stroke, hip fracture or elective joint replacement, and other inpatients referred for rehabilitation. It examines reasons why acute level of care criteria are not met and explores differences in decision making between acute care and rehabilitation teams around patient appropriateness and readiness for transfer. Methods: Cohort study of patients in a large acute referral hospital in Australia followed with the InterQual utilization review tool, modified to also include reasons why utilization criteria are not met. Additional data on team decision making about appropriateness for rehabilitation, and readiness for transfer, were collected on a subset of patients. Results: There were 696 episodes of care (7189 bed days). Days meeting acute level of care criteria were 56% (stroke, hip fracture and joint replacement patients) and 33% (other patients, from the time of referral). Most inappropriate days in acute care were due to delays in processes/scheduling (45%) or being more appropriate for rehabilitation or lower level of care (30%). On the subset of patients, the acute care team and the utilization review tool deemed patients ready for rehabilitation transfer earlier than the rehabilitation team (means of 1.4, 1.3 and 4.0 days from the date of referral, respectively). From when deemed medically stable for transfer by the acute care team, 28% of patients became unstable. From when deemed stable by the rehabilitation team or utilization review, 9% and 11%, respectively, became unstable. Conclusions: A high proportion of patient days did not meet acute level of care criteria, due predominantly to inefficiencies in care processes, or to patients being more appropriate for an alternative level of care, including rehabilitation. The rehabilitation team was the most accurate in determining ongoing medical stability, but at the cost of a longer acute stay. To avoid inpatients remaining in acute care in a state of \u27terra nullius\u27, clinical models which provide rehabilitation within acute care, and more efficient movement to a rehabilitation setting, is required. Utilization review could have a decision support role in the determination of medical stability

    The Phyre2 web portal for protein modeling, prediction and analysis

    Get PDF
    Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user's protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2. A typical structure prediction will be returned between 30 min and 2 h after submission
    corecore