248 research outputs found

    Synthesis and kinetic analysis of hydromagnesite with different morphologies by nesquehonite method

    Get PDF
    514-521Hydromagnesite with different morphologies has been synthesized using self-made nesquehonite whiskers as raw materials. The synthesized samples have been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that porous rod-like hydromagnesite are generated at 328~353K and in the pH value of 9.30+0.2, while irregular flower-like and flat layered ones are synthesized in the pH values of 10.0+0.05 and 11.0+0.05, respectively. The yield of hydromagnesite improved linearly with the increase of the temperatures and solution pH values. Porous rod-like hydromagneiste crystals with good crystalline and uniform morphology are obtained when the pyrolysis time is over 60 min. Furthermore, the apparent activation energy of phase transformation is calculated to be 3.4080 kJ/mol. According to the results, the experimental data can be well described by the kinetic model, suggesting that the phase transfer rate is dependent on the temperature

    Self-supervised phase unwrapping in fringe projection profilometry

    Full text link
    Fast-speed and high-accuracy three-dimensional (3D) shape measurement has been the goal all along in fringe projection profilometry (FPP). The dual-frequency temporal phase unwrapping method (DF-TPU) is one of the prominent technologies to achieve this goal. However, the period number of the high-frequency pattern of existing DF-TPU approaches is usually limited by the inevitable phase errors, setting a limit to measurement accuracy. Deep-learning-based phase unwrapping methods for single-camera FPP usually require labeled data for training. In this letter, a novel self-supervised phase unwrapping method for single-camera FPP systems is proposed. The trained network can retrieve the absolute fringe order from one phase map of 64-period and overperform DF-TPU approaches in terms of depth accuracy. Experimental results demonstrate the validation of the proposed method on real scenes of motion blur, isolated objects, low reflectivity, and phase discontinuity

    Deep Learning-enabled Spatial Phase Unwrapping for 3D Measurement

    Full text link
    In terms of 3D imaging speed and system cost, the single-camera system projecting single-frequency patterns is the ideal option among all proposed Fringe Projection Profilometry (FPP) systems. This system necessitates a robust spatial phase unwrapping (SPU) algorithm. However, robust SPU remains a challenge in complex scenes. Quality-guided SPU algorithms need more efficient ways to identify the unreliable points in phase maps before unwrapping. End-to-end deep learning SPU methods face generality and interpretability problems. This paper proposes a hybrid method combining deep learning and traditional path-following for robust SPU in FPP. This hybrid SPU scheme demonstrates better robustness than traditional quality-guided SPU methods, better interpretability than end-to-end deep learning scheme, and generality on unseen data. Experiments on the real dataset of multiple illumination conditions and multiple FPP systems differing in image resolution, the number of fringes, fringe direction, and optics wavelength verify the effectiveness of the proposed method.Comment: 26 page

    Achieving Energy-Efficient Uplink URLLC with MIMO-Aided Grant-Free Access

    Full text link
    The optimal design of the energy-efficient multiple-input multiple-output (MIMO) aided uplink ultra-reliable low-latency communications (URLLC) system is an important but unsolved problem. For such a system, we propose a novel absorbing-Markov-chain-based analysis framework to shed light on the puzzling relationship between the delay and reliability, as well as to quantify the system energy efficiency. We derive the transition probabilities of the absorbing Markov chain considering the Rayleigh fading, the channel estimation error, the zero-forcing multi-user-detection (ZF-MUD), the grant-free access, the ACK-enabled retransmissions within the delay bound and the interactions among these technical ingredients. Then, the delay-constrained reliability and the system energy efficiency are derived based on the absorbing Markov chain formulated. Finally, we study the optimal number of user equipments (UEs) and the optimal number of receiving antennas that maximize the system energy efficiency, while satisfying the reliability and latency requirements of URLLC simultaneously. Simulation results demonstrate the accuracy of our theoretical analysis and the effectiveness of massive MIMO in supporting large-scale URLLC systems.Comment: 14 pages, 9 figures, accepted to appear on IEEE Transactions on Wireless Communications, Aug. 202

    ANTIOXIDANTACTIVITY OF POLYPHENOLS FROM TOONA SINENSIS ROEM SEEDS AND THE INHIBITION OF ALDOSE REDUCTASE

    Get PDF
    Background: The seeds of Toona sinensis (Juss.) M. Roem (T. sinensis) have long been used in Traditional Chinese Medicine for the treatment of diabetes mellitus (DM) and its complications. The aim of this study was to investigate the antioxidant activity of different polyphenols fractions from Toona sinensis Roem (T. sinensis) seeds (PTSS) and the inhibition of aldose reductase (AR). Methods: Macroporous resin was used to purify PTSS, and the antioxidant activities were evaluated with total antioxidant capacity and free-radical scavenging. AR inhibitory activities were investigated by employing various established systems. Results: The polyphenol eluted by 60% alcohol (PTSS3) exhibit the highest antioxidant activity and AR inhibition, with an r value of 0.9924 ± 0.0066 in correlation analysis. The inhibition mechanism of PTSS3 on AR is uncompetitive inhibition. Conclusion: This research demonstrates that PTSS offers potential for intervening diabetes mellitus and its complications

    Long-term retrospective assessment of a transmission hotspot for human alveolar echinococcosis in mid-west China

    Get PDF
    Background Human alveolar echinococcosis caused by infection with Echinococcus multilocularis is one of the most potentially pathogenic helminthic zoonoses. Transmission occurs involving wildlife cycles typically between fox and small mammal intermediate hosts. In the late 1980s/early 1990s a large focus of human AE was identified in poor upland agricultural communities in south Gansu Province, China. More detailed investigations in 1994–97 expanded community screening and identified key risk factors of dog ownership and landscape type around villages that could support susceptible rodent populations. A crash of the dog population (susceptible domestic definitive host) in the early 1990s appeared to stop transmission. Methodology/Findings We subsequently undertook follow-up eco-epidemiological studies based on human population screening and dog survey, in 2005/6 and in 2014/15. Our observations show a decrease in human AE prevalence, especially marked in the 11–30 year old age category. In 2015, although the dog population had recovered and in addition, forest protection and the reforestation of some areas may have favoured red fox (wild definitive host) population growth, there was no evidence of infection in owned dogs. Conclusions/Significance Those observations suggest that over decades socio-ecological changes resulted in a cascade of factors that exacerbated and then interrupted parasite emergence, with probable elimination of peri-domestic transmission of E. multilocularis in this area, despite the relative proximity of large active transmission foci on the eastern Tibetan Plateau. This study case exemplifies how anthropogenic land use and behavioural changes can modify emergence events and the transmission of endemic zoonotic parasite infections, and subsequently the importance of considering processes over the long-term in a systems approach in order to understand pathogen and disease distribution
    corecore