73 research outputs found

    Effect of Dry-wet Cycle on the Formation of Loess Slope Spalling Hazards

    Get PDF
    This paper investigates the effect of dry-wet cycle process on the formation of loess slope spalling hazards. Based on the CT scan tests and macroscopic fissures analysis, the fissure variation law of loess samples under different dry-wet cycle times were determined. Through the laboratory direct shear tests, the variation law of shear strength, cohesion and angle of internal friction of loess samples under different dry-wet cycle times and different dry-wet cycle water content variation ranges were discussed. The results show that the natural water contents of Luo-chuan loess were higher than Tong-chuan loess due to it’s higher contents of clay particles. With the increase of dry-wet cycle times, the internal fissure numbers of loess samples increased dramatically. The value of shear strength and cohesion of loess samples in two different areas decreased dramatically due to the increase of dry-wet cycle times. Higher water content variation ranges of dry-wet cycles leaded to lower shear strength of loess samples under the same dry-wet cycle times. Loess slope spalling hazards often happened due to the decrease of shear strength and the occurrence of internal fissures in loess induced by the dry-wet cycle process

    Experimental Study on Seismic Performance of Prefabricated Utility Tunnel

    Get PDF
    Utility tunnel is a kind of underground tunnel structure that carries more than two types of public utility lines, and the utility tunnels built by the prefabricated method have been adopted in many modern cities due to their easy maintenance and environmental protection capabilities. However, knowledge about the seismic performance of the prefabricated utility tunnel and pipelines inside is quite limited. In this paper, a prefabricated utility tunnel newly built in Xi’an, China, is taken as the prototype; a series of shaking table tests are conducted to investigate the seismic performance of the prefabricated utility tunnel in loess foundation, using El Centro earthquake wave as the input loading. Details of the experimental setup focus on the design of the soil container, scaled model (1 : 10), sensor arrangement, and test cases. Dynamic responses including evaluation of boundary effect, the amplification factor of the ground and structure, distribution of soil pressure, characteristics of predominant frequencies, and the damage phenomena are analyzed. Dynamic strain obtained by Fiber Bragg Grating sensors releases the critical positions of the prefabricated utility tunnel during the earthquake. Moreover, the dynamic responses of the pipelines contained in the utility tunnel are also analyzed. From aforementioned results, the seismic performance of the prefabricated utility tunnel has been revealed. The results will provide a reference for the seismic design of prefabricated utility tunnels. Document type: Articl

    Numerical study on landslide dynamic process and its impact damage prediction to brick-concrete buildings, a case from Fenghuang street landslide in Shaanxi, China

    Get PDF
    The study of landslide dynamic process and impact damage has important theoretical and practical significance for landslide risk quantitative assessment. Taking Fenghuang Street landslide in Ningqiang County, Shaanxi Province, China as an example, the dynamic process of landslide and its damage to brick-concrete structure buildings are predicted by using discrete element method. Firstly, a three-dimensional numerical landslide model is established by means of the particle flow code system (PFC3D), which is based on landslide investigation, surveying, engineering exploration and geotechnical testing. Secondly, the whole process of landslide deformation, failure, movement and impact damage was simulated, and the velocity, displacement and impact force of the landslide in the motion process were quantitatively studied. Thirdly, the building model (brick-concrete structure) located at the foot of the landslide was constructed by PFC3D and finite element software (Midas/gen), respectively. The characteristics of deformation and displacement of the buildings after the landslide impact are analyzed, and the impact damage of the landslide is predicted. The results show that the rear edge of Fenghuang Street landslide first deforms and fails, and the leading edge is gradually pushed out. After the locking section of the front edge is broken, the landslide begins to slide as a whole, which is a typical push landslide. The main sliding time of the landslide is about 30 s, the maximum average velocity is 3.2 m/s, and the maximum displacement is about 40 m. After the landslide hits the building, the building is displaced in the moving direction of the landslide, and the wall of the building impacted by the landslide is destroyed, resulting in an collapse evident. The relevant research methodologies and findings in this paper can provide a reference for the risk assessment of the same type of landslides, especially the quantitative assessment of the vulnerability for the brick-concrete buildings at risk

    Isoconversional kinetic analysis applied to five phosphoniumcation-based ionic liquids

    Get PDF
    Thermal degradation of five phosphonium cation-based ionic liquids ([P66614][BEHP], [P66614][(iC8)2PO2],[P66614][NTf2], [P44414][DBS] and [P4442][DEP]) was studied using dynamic methodology (25–600◦C at 5,10 and 20◦C/min) in both inert (nitrogen) and reactive (oxygen) atmospheres. In addition, isothermalexperiments (90 min at 200, 225 and 250◦C) were carried out with [P66614][(iC8)2PO2]. Results indicatethat thermal stability is clearly dominated by the coordination ability of the anion, with [P66614][NTf2] out-performing the other ones in both pyrolytic and oxidising conditions. Although the thermal degradationmechanism is affected by atmospheric conditions, the degradation trend remains practically constant.As the dynamic methodology usually overestimates the long-term thermal stability, an isoconversionalmethodology is better for predicting the long-term thermal stability of these ionic liquids in order to beused as base oil or additive in lubricants formulation. Finally, the model-free methodology can predict atlower costs the ILs performance in isothermal conditions

    Multiscale Analysis of the Strength Deterioration of Loess under the Action of Drying and Wetting Cycles

    No full text
    To study the strength degradation mechanism of compacted loess during dry-wet cycles, 0–5 dry-wet cycles tests and many triaxial compression tests were carried out on loess with an optimal moisture content. During the dry-wet cycles, the loess samples were analyzed by nuclear magnetic resonance and scanning electron microscopy. Studies have shown that at the macro level, with increasing numbers of wet and dry cycles and increasing cycle amplitude, the cohesive force and internal friction angle of the loess decrease, and the shear strength of the loess deteriorates significantly. At the micro level, with the number of wet and dry cycles increasing, the connection between particles changes from surface-to-surface contacts to point-to-point or point-to-surface contacts. The edges and corners of the particles decrease, the roundness increases, the large pores gradually decrease, the small pores gradually increase, and the fractal dimension gradually increases. In terms of microscopic view, the NMR test shows that with increasing numbers of dry-wet cycles, the T2 peak curve increases, the curve width increases slightly, the peak area gradually increases, and the porosity increases. From the macroscopic, mesoscopic, and microscopic multiscale analysis, the structure of loess is degraded under the action of dry and wet cycles; the strength of the loess is degraded significantly after 0 to 3 cycles and then gradually stabilizes. These research results can provide a certain reference value for the management of loess collapse geological disasters in semiarid climates

    Deterioration of the Internal Structure of Loess under Dry-Wet Cycles

    No full text
    To understand the structural damage evolution process of loess under the action of dry-wet cycles, a triaxial test of a dry-wet cycle was performed by considering three influencing factors: initial moisture content, amplitude of the dry-wet cycle, and number of dry-wet cycles. The stress-strain curves of undisturbed loess samples at different cycling times vary under different compacted loess cycles. Under the same axial strain, the stress value of the undisturbed loess is higher than that of the loess sample after a dry-wet cycle, indicating that such cycle can reduce the strength of loess. As the number and amplitude of dry-wet cycles increase, the shear strength of the loess sample and the value of cohesion (c) of the strength index gradually decrease, and the amplitude gradually decreases. With an increase in the number and amplitude of dry-wet cycles, the change in the internal friction angle of the strength index is inevident, indicating that the effect of dry-wet cycles on the internal friction angle of loess is insignificant. Computed tomography (CT) scan experiments were also conducted to obtain the evolution of loess cracks before and after a dry-wet cycle. Studies have shown that as the number and amplitude of dry-wet cycles increase, the mean (ME) value of CT decreases, the standard deviation (SD) value increases, and the ME value is obtained during the initial stage of a dry-wet cycle. Meanwhile, the decreasing trend of ME and the increasing trend of SD values are most evident during the period of a dry-wet cycle. In conclusion, dry-wet cycles promote the development of cracks

    Temporal and Spatial Effect of Surrounding Rock and Supporting Construction of a Large Soil Tunnel

    No full text
    Based on the Zaosheng No. 3 tunnel of the Yinchuan-Xi’an high-speed railway, the surrounding rock pressure, contact pressure of the primary support, and secondary lining and internal force of the secondary lining concrete are systematically tested using a vibrating wire sensor, and the correlation between the advance construction distance and the surrounding rock release rate is studied with finite element software. The results show that the pressure on the surrounding rock is low when the deeply buried soil tunnel is excavated and can be divided into three stages: rapid growth, slow growth, and flattening with time. It is more reasonable to calculate the surrounding rock pressure by using tunnel planning calculations. For the contact pressure, although the value of each measuring point in the inverted arch changes a little, the arch pressure obviously has the characteristics of rapid growth and a sharp rebound. Most of the test points of the second lining concrete show a compression state, which is far less than the ultimate compressive strength. At the same time, the initial support of the tunnel bears a large load, while the secondary lining bears a relatively small force, and the load sharing ratio of the two ranges between 0.1 and 0.7; with the progress of the excavation section, the surrounding rock deformation (deformation release rate) increases gradually. When the excavation face is close to the monitoring section, the deformation (deformation release rate) is the most severe. With the increase in the distance between the excavation section and the monitoring section, the deformation (deformation release rate) tends to be flat

    Experimental Study on the Microstructure and Expansion Characteristics of Paleosol Based on Spectral Scanning

    No full text
    To investigate the microstructure of paleosol and its expansion characteristics, the paleosol of the Zaosheng #3 tunnel of the Yinxi high-speed railway was studied. Based on X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), nuclear magnetic resonance (NMR), and scanning electron microscopy techniques (SEM), the microstructure of the paleosol was analyzed in terms of the mineral composition, formation elements, pore structure, and particle morphology. Five groups of undisturbed and remolded soils with different moisture contents were tested for the unloaded expansion rate and loaded expansion rate. The results show that the mineral components of the paleosol are mainly quartz, potash feldspar, calcite, and hematite, with the highest-content-component quartz accounting for 45.4% of the total content; the clay mineral composition of the paleosol has the highest content of montmorillonite at 12.3%. The elemental composition of the paleosol is dominated by Al, Si, Ca, and Fe, which form expansive mineral components such as quartz and montmorillonite, creating inherent conditions for expansibility of the paleosol. The T2 distribution curves of the undisturbed and remolded paleosol are composed of three peaks. The pore distribution of paleosol mainly includes medium pores, followed by large pores, and the contents of small pores and superlarge pores are very small. In terms of particle contact, the undisturbed soil is mostly in the form of “surface-surface” and “surface-edge” contact, and the remolded soil is mainly in the form of “point-surface” and “point-point” contact. The unloaded expansion rate of remolded soil is approximately twice that of undisturbed soil. The rate of loaded expansion of both soils decreases with increasing moisture content
    • …
    corecore