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Abstract 

Thermal degradation of five phosphonium cation-based ionic liquids ([P66614][BEHP], [P66614][(iC8)2PO2], 

[P66614][NTf2], [P44414][DBS] and [P4442][DEP]) was studied using dynamic methodology (25 to 600 ºC at  

5, 10 and 20 ºC/min) in both inert (nitrogen) and reactive (oxygen) atmospheres. In addition, isothermal 

experiments (90 min at 200, 225 and 250 ºC) were carried out with [P66614][(iC8)2PO2]. Results indicate 

that thermal stability is clearly dominated by the coordination ability of the anion, with [P66614][NTf2] 

outperforming the other ones in both pyrolytic and oxidising conditions. Although the thermal 

degradation mechanism is affected by atmospheric conditions, the degradation trend remains practically 

constant. As the dynamic methodology usually overestimates the long-term thermal stability, an 

isoconversional methodology is better for predicting the long-term thermal stability of these ionic liquids 

in order to be used as base oil or additive in lubricants formulation. Finally, the model-free methodology 

can predict at lower costs the ILs performance in isothermal conditions.   

 

Highlights 

 
• Weakly coordinating anions provoke good thermal stability of ILs.  
• [P66614][NTf2] and [P44414][DBS] are the most thermally stable ILs in this study. 
• Isoconversional methods are better than dynamic ones for long-term thermal studies. 
• Activation energy behavior at low conversions is related to a single reaction. 
• Model-free methodology can predict the ILs performance in isothermal conditions. 
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1. Introduction 
 

Ionic liquids (ILs) are salts typically formed by the combination of large organic cations (commonly 

containing large alkyl chains) and a variety of anions (either inorganic or organic). In the last 15 years, 

the use of ILs has increased considerably due to their interesting chemical and physical properties, such 

as negligible vapour pressure, high thermal stability, low melting point, high solvating capacity, high 

thermal conductivity and wide electrochemical window [1–6]. These properties mean that ILs are 

excellent candidates for various applications, including their use as environmentally friendly solvents for 

replacing traditional volatile organic ones [7,8]. Currently, growing interest is focused on the use of ILs 

for high temperature applications, such as thermal fluids and electrolytes for solar cells and fuel cells 

[9,10]. Significant research has been focused on the thermophysical properties of imidazolium-based ILs 

[11,12], but there are only a few studies focused on a novel class of ILs based on phosphorous quaternary 

cations [13,14]. The phosphorus atom allows for bonding with different substituents, giving a great 

number of different structures and physicochemical properties [15,16]. 

One of the most important characteristics of ILs is their thermal stability. An appropriate estimation of 

this property is a key factor in many engineering applications, including lubrication [17]. Despite the fact 

that a significant number of works have been focused on the study of thermal degradation of ILs [18–25], 

only a few of them have used phosphonium based ILs [13,15,26]. In addition, thermal stability is often 

misleadingly reported to extend up to temperatures of more than 400 ºC. This issue occurs if high heating 

rates (>10 K/min) are used in the temperature ramped thermogravimetric analysis (TGA) studies, 

overestimating the thermal stability of the analysed samples [22–25]. Due to the fact that most 

applications require long-term thermal stability, more reliable data is needed in this field. A full 

evaluation of the long-term thermal stabilities and thermal decomposition is necessary to identify global 

kinetic models. Nowadays, the knowledge of the kinetic parameters, such as reaction rate and activation 

energy, is one of the key factors for determining thermal stability. Some research has been focused on the 

determination of activation energies and kinetic models, describing the thermal degradation of some ILs. 

Most of these studies performed kinetic analyses based on isothermal experiments. In these cases, some 

isothermal experiments were measured at low temperatures (below onset temperature) and kinetic 

parameters were determined assuming zero-order processes [10,27]. Therefore, a prediction of the long-

term stability of ILs based on the modelling of non-isothermal TG measurements enables to reduce 

significantly the time required to carry out the experiment, resulting in a considerable cost reduction [23]. 
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Lubricant oils used in cooling engine parts are exposed to high and long-term thermal stress, which leads 

to thermal degradation (evaporation of volatiles) and polymerisation, forming a heavier fraction [28]. 

Volatility is the main parameter linked to oil consumption and, besides the Noack volatility test, the 

volatility of oils and additives have been measured using TGA [17]. A lot of researches have been 

published concerning the use of ionic liquids as lubricants since 2001 [29], proving their remarkable 

potential for this purpose [4,6,30-32]. At the beginning, imidazolium-based ionic liquids with [PF6] and 

[BF4] anions were widely used [33-35]. Despite their good tribological behaviour, the hydrolysis products 

of those anions are highly corrosive [36]. This fact provoked the introduction of new and more stable ILs 

based on [FAP] and [NTf2] anions [37-53], which present enhanced tribological properties due to the 

formation of fluoride tribofilms, especially at high loads [54]. Recently, phosphonium cation-based ILs 

have been introduced in this field because of their growing commercial availability and good tribological 

performance [26,55-62]. Finally, taking into account the importance of thermal stability in the lifetime of 

lubricants and additives, the determination of thermal models has become an interesting research topic 

from scientific and technical points of view. 

In this work, an alternative approach using an isoconversional (model-free) methodology is proposed to 

derive the long-term stabilities of five phosphonium cation-based ILs: trihexyltetradecylphosphonium 

bis(2-ethylhexyl)phosphate ([P66614][BEHP]), trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl) 

phosphinate ([P66614][(iC8)2PO2]), trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl) imide 

([P66614][NTf2]), tributyltetradecylphosphonium dodecylbenzenesulfonate ([P44414][DBS]) and 

tributylethylphosphonium diethylphosphate ([P4442][DEP]). Previous papers [27,63] have determined that 

both model-free and isothermal model-fitting methodologies are in good agreement. Using 

isoconversional methods, kinetic parameters can be derived without any assumption of the mechanism. 

Furthermore, an isoconversional rate expression determined using non-isothermal (dynamic) data can 

predict isothermal reaction data.  

 

2. Experimental 

2.1. Ionic liquids 

Chemical and structural descriptions of the five ILs used, ([P66614][(iC8)2PO2], [P66614][BEHP], 

[P66614][NTf2], [P44414][DBS] and [P4442][DEP]), are shown in Table 1. These liquids were provided by 

Ionic Liquid Technologies GmbH, chosen from an available family of ILs (phosphonium cation-based) 
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that is currently gaining consideration because of their possible use in lubricant applications (as base fluid 

or additive). 

 

Table 1. Chemical and structural descriptions of the ILs used in this work. 

IUPAC and short name Empirical 
formula 

Purity 
(%) 

Molecular 
weight Chemical structure 

 

Trihexyltetradecylphosphonium 
bis(2,4,4-trimethylpentyl) 

phosphinate 
 

[P66614][(iC8)2PO2] 

C48H102O2P2 95 773.27 

 

Trihexyltetradecylphosphonium 
bis(2-ethylhexyl)phosphate 

 
[P66614][BEHP] 

C48H102O4P2 98 805.29 

 

 

Trihexyltetradecylphosphonium 
bis(trifluoromethylsulfonyl) 

imide 
 

[P66614][NTf2] 

C34H68F6NO4PS2 98 764.01 

 

Tributyltetradecylphosphonium 
dodecylbenzenesulfonate 

 
[P44414][DBS] 

C44H85O3PS 95 725.18 

 

Tributylethylphosphonium 
diethylphosphate 

 
[P4442][DEP] 

C18H42O4P2 95 384.47 

 

 

 

2.2. Thermal analysis 

Thermal analysis was performed in a Mettler Toledo TGA/SDTA 851 thermogravimetric analyser, 

operating in dynamic and isothermal modes under dry nitrogen and oxygen atmospheres (50 mL/min). 

Ionic liquid samples (10–12 mg) used as supplied by Ionic Liquid Technologies GmbH were placed in an 

open aluminium crucible without any previous treatment. Dynamic experiments were performed at 
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temperatures from 25 to 600 ºC at three different heating rates (5, 10 and 20 ºC/min). Isothermal 

experiments were conducted at three different fixed temperatures (200, 225 and 250 ºC) during 90 min 

tests. Results were analysed using Mettler-Toledo STARe version software. The onset temperature (Tonset) 

is the intersection of the baseline weight and the tangent of the weight versus temperature curve as 

decomposition occurs. In addition, other temperatures were determined at 10% of mass loss, total mass 

loss, as well as the minimum of differential thermogravimetric (DTG) peaks. 

 

2.3. Kinetic parameters and modelling 

The mass loss of an IL under a thermogravimetric experiment may be the result of combining evaporation 

and/or thermal decomposition kinetics [23,64,65]. The rate of evaporation can be defined using eq. (1), as 

the mass transfer of the IL into the gas stream flowing over the crucible that contains the sample.  

                                                            
RT

Tp
BAM

dt
dm vap

IL

)(
=                                                                       (1) 

where MIL is the molar mass of the ionic liquid, B is the mass transfer coefficient, A is the surface area in 

contact with the gas phase and pvap the vapour pressure. In addition, the rate of heterogeneous thermal 

decomposition can be described by eq. (2): 

                                         (2) 

In eq. (2): t is time, k(T) is the temperature-dependent constant and f(α) is a function called the reaction 

model, which describes the dependence of the reaction rate on the extent of conversion, α.  

The rates of evaporation and decomposition increase almost exponentially with temperature, being the 

decomposition rate more sensitive than the evaporation rate. Thus, at both high heating rates and 

temperature ranges, thermal decomposition may control the overall mass loss (and vice versa) [64]. 

Assuming that heating rates used in the TGA experiments carried out in this study can be considered as 

“high” (>4 K/min), the kinetic process is mainly controlled by thermal decomposition within the whole 

range of conversion, and eq. (1) could be negligible. In a TGA experiment in which the mass variation 

versus temperature is obtained, the extent of reaction is calculated using the following equation: 

                                                                                      (3) 

where mi and mf are the initial and final masses, respectively, and mt is the mass at a specific time, t.  
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There are several methods for analysing thermal decomposition kinetic data [66]. These methods may be 

classified according to the experimental conditions selected and the mathematical analysis performed. 

Experimentally, both isothermal and non-isothermal methods are employed. The mathematical 

approaches employed can be divided into model-fitting and isoconversional (model-free) methods. 

In model fitting methodologies, the term f(α) is determined by adjusting a reaction model to experimental 

data. Subsequently, k(T) can be evaluated by the form of f(α) chosen. This is a limitation because the 

calculated kinetic parameters are very dependent upon the chosen kinetic model [67]. For zero-order 

processes, the degradation rate can be represented in integrate form as: 

CtTk +⋅= )(α                              (4) 

Thus, using isothermal scans, it is possible to obtain k (T) from a linear fitting of α versus time, where C 

is a constant. Then, when k (T) is known, the Arrhenius equation can be applied: 

                  (5) 

                                                                                     (6)  

In Eqs. (5) and (6), A is the pre-exponential factor, E is the activation energy and R is the gas constant. 

Therefore, a plot of ln k(T) versus (1/T) will allow us to obtain E from the slope. The major problem of 

this isothermal methodology is that the sample requires some time to reach the experimental temperature.  

Model-free (isoconversional) methods allow estimation of the activation energy as a function of α without 

choosing the reaction model. The basic assumption of these methods is that the reaction rate for a 

constant extent of conversion depends only on temperature. Considering non-isothermal experiments that 

are performed at constant heating rate (β), Eq. (2) can be written as follows:  

                                                          (7) 

An integration function is shown below, where g(α) is the integrated kinetic function or integral reaction 

model.  

                                                             (8) 

The use of several heating rates enables the application of model-free (isoconversional) methods. These 

methods make the assumption that the parameters of the model are identical for measurements at all 

heating rates. It allows for a direct fit of the model to the experimental data without any transformation 
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[10]. An additional advantage lies in the fact that there are no limitations with respect to the complexity 

of the model; consequently, it is reliable for solving applied kinetic problems [68-71]. 

The integral on the right side of Eq. (8) has no analytical solution and some approximation methodology 

is necessary. The Kissinger-Akahaira-Sunose (KAS) method [72] is based on the following equation: 

                                                                                                                 (9) 

To apply the method, it is necessary to obtain at least three different heating rates (β), with the respective 

conversion curves being subsequently evaluated from the measured TGA curves [73]. For each 

conversion (α),  plotted against 1/Tα, gives a straight line with slope -Eα/R and thus, the activation 

energy is obtained as a function of the conversion. The evaluation of Eα dependence is enough to predict 

the isothermal kinetics from non-isothermal data, as in Eq. (7): 
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=               (10) 

 

The time (tα), computed by Eq. (10), will be reached at an arbitrary temperature (T0) with a given 

conversion (α).  

 

3. Results and discussion 

3.1. Thermal decomposition 

Fig. 1 shows the TG and DTG curves obtained under inert (nitrogen) atmosphere for the five samples, 

with a very large range of thermal stability under these pyrolytic conditions (absence of oxygen). Most of 

the samples have an onset decomposition temperature over 300 ºC, with a couple of Tonset values even 

higher than 400 ºC. By analysing the obtained data, the most stable IL is [P66614][NTf2]. The stabilities 

decrease in the order of [P66614][NTf2] > [P44414][DBS] > [P66614][(iC8)2PO2] > [P4442][DEP] > 

[P66614][BEHP]. As shown by the DTG curves (Figs. 1c and 1d), the [P66614][NTf2], [P44414][DBS] and 

[P66614][(iC8)2PO2] samples exhibited only one resolved peak centred at 456, 453 and 376 ºC, respectively 

(minimum in DTG curves, Tpeak1), whereas the shape of the DTG curves obtained for the samples 

[P66614][BEHP] and  [P4442][DEP] present a more complex mechanism. The latter ILs have, at this heating 

α
2
α α α

Eβ RA 1ln = ln
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rate, two well-resolved peaks (Tpeak1 and Tpeak2) at 331/467 ºC ([P66614][BEHP]) and 342/530 ºC 

([P4442][DEP]). This behaviour is possibly related to the influence of a more reactive phosphate type anion 

[13], causing alkyl phosphates to pyrolyze readily at temperatures of 300 ºC and above [74] and thus 

resulting in an extra peak. Early weight losses in all samples are probably related to the impurities 

(between 2–5% in weight according to Table 1) present in the ionic liquids used in this study [15]; 

although they seem more pronounced with phosphate anion ILs (Fig. 1b), probably due to their water 

content. In view of these results, it can be concluded that anions play an important role in the mechanism 

of thermal decomposition, because of the similarity of all the cations used in this study. A previous 

research based on the thermal decomposition of amino- and hydroxyl-functionalised ILs composed of 

different cations showed that the stability of ILs is generally controlled by the anion [75].  

 

 

Fig. 1. (a) Full scale TGA, (b) TGA at square region zoom and (c, d) DTG curves for the five ILs 

obtained in an inert (nitrogen) atmosphere at a heating rate of 10 ºC/min: () [P66614][(iC8)2PO2],                     

() [P66614][BEHP], () [P66614][NTf2], () [P44414][DBS] and () [P4442][DEP]. 

 

These results are in agreement with others reporting that the thermal stability of ILs is largely determined 

by the coordinating ability of the anion [76,77]. It is likely that the main goal for achieving weak 
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coordinating chemistry is a high degree of charge delocalisation. The charge delocalisation should happen 

over the entire anion, avoiding individual atoms or groups of atoms with high concentrations of charge, 

such as oxygen or chlorine atoms. This means that anions with accessible oxygen atoms for binding to the 

cation should have a stronger coordinating ability than others without available atoms with high 

concentrations of charge. Alternatively, larger anions (containing more atoms) provoke better 

delocalisation of the charge and weaker coordination [78]. Taking into account all these considerations, 

ILs containing anions without accessible oxygen for binding to the cation, such as 

bis(trifluoromethylsulfonyl)imide or with an aromatic group and larger alkyl chains, such as 

dodecylbenzenesulfonate, provide a better delocalisation of the charge leading to good thermal stability 

[63,76]. In addition, anion nucleophilicity is another possible approach which should prove useful in 

predicting quantitative thermal stability trends in ionic liquids [79,80]. The pathway with the lowest 

activation free energy would be expected to be the most nucleophilic [81].  

Regarding the more reactive phosphate type ILs ([P66614][BEHP] and [P4442][DEP]), three stages of weight 

loss up to 600ºC were observed when an inert (nitrogen) atmosphere was used: i) 25-200 ºC, ii) 200-500 

ºC and iii) 500-600 ºC, with the main weight loss being found in the 200-500 ºC case. In this mentioned 

case, it is possible to find fragments of H2O, linear hydrocarbons and hydrocarbon arms attached to 

phosphorus [82]. Since there is no reactive atmosphere, the most abundant fragments should correspond 

to hydrocarbons with lengths greater than those found in oxidative atmosphere. The absence of a reactive 

atmosphere makes it impossible for the formation of P2O5, CO2 and H3PO4. 

 

3.2. Thermo-oxidative decomposition 

When analysing the thermal stability of ILs, a question that should be raised is how to unequivocally 

define its thermal decomposition temperature. The answer is not direct, even if circumscribed to a single 

technique, such as TGA. Apart from factors related to the sample itself, such as the presence of moisture 

and/or impurities (which could lead to a significant decrease in the stability), taking into account the 

operating factor (type of sample, sample size and heating rate) is also required. This coexistence of 

different factors limits the comparison of data from different sources [15,77], with the experimental 

atmosphere used in TGA studies being one of the most important factors affecting the results [65,83]. 

TGA and DTG curves measured in an oxidising atmosphere are shown in Fig. 2. Since the atmosphere 
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plays a very important role in the thermal degradation of ILs, the shape of these curves is very different 

from the curves displayed in Fig. 1.  

 

 

Fig. 2. (a) Full scale TGA, (b) TGA at square region zoom and (c, d) DTG curves for the five ILs 

obtained in a reactive (oxygen) atmosphere at a heating rate of 10 ºC/min: ()[P66614][(iC8)2PO2],         

() [P66614][BEHP], () [P66614][NTf2], () [P44414][DBS] and () [P4442][DEP]. 

According to Keating et al. [82], it is likely that fragments of H2O, linear hydrocarbons and hydrocarbon 

arms attached to phosphorus are found when phosphonium-based ILs react from 250 to 400ºC. Thus, 

linear hydrocarbon fragments of different lengths, such as CH3, C2H5, C3H7, C4H9, C5H11, C6H13, can be 

distinguished. Besides, the organophosphorus compounds can be result in intact P-C bonds in which the 

number and length of the hydrocarbon can be diverse, i.e., P(CH2)3, P(CH2)4, CH2=P(CH2CH2)2, 

CH2=P(CH2CH2)3, P(CH2CH2)4. It is also probable that the longest hydrocarbon arms attached to 

phosphorus are present in higher amounts between 400 and 500ºC. Other mass fragments that can be 

found are CO2 and H3PO4. The former one results from the oxidation of hydrocarbons, whereas the latter 

is due to phosphorus oxidation to P2O5, which yields phosphoric acid in presence of water. Taking into 

account that [P4442][DEP] IL has short-length hydrocarbons, the presence of CH3, C2H5, C3H7, P(CH2)3 

and P(CH2)4 can be expected. Besides, other fragments such as CO2 and P2O5 can also be expected. In 
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this case, considering that the hydrocarbon chain of the anion is short, the phosphorus is more easily 

accessible for oxidation to P2O5. This can explain why the residual content obtained in oxidising 

atmosphere is very high (25.9%) in comparison with that found in inert atmosphere. 

A data comparison between Figs. 1 and 2 is carried out in Table 2, by collecting several 

thermogravimetric parameters, such as Tonset, T10%, Tpeak1, Tpeak2 and Wttotal loss in both inert (nitrogen) and 

reactive (oxygen) atmospheres. In view of the results, there is a clear influence of the atmosphere on both 

temperatures of thermal degradation (Tonset and T10%) and in the total weight loss (Wttotal loss). These 

mentioned differences between both atmospheres have also been reflected on the DTG curves (Tpeak1 and 

Tpeak2), indicating a mechanism of decomposition/oxidation in two steps for samples [P66614][NTf2],  

[P44414][DBS] (Figs. 2c and 2d) against the one-step thermal decomposition process under nitrogen.  

 

Table 2. Thermal results from dynamic scans in both atmospheres at 10 ºC/min. 

Ionic Liquids Atmosphere Tonset (ºC) T10% (ºC) Tpeak1 (ºC) Tpeak2 (ºC) Wttotal loss* (%) 

[P66614][(iC8)2PO2] 
N2 338 313 376 -- 99.6 

O2 320 286 344 390 84.6 

[P66614][BEHP] 
N2 298 276 331 467 93.5 

O2 296 304 339 470 82.0 

[P66614][NTf2] 
N2 434 400 456 -- 98.8 

O2 401 388 422 432 96.7 

[P44414][DBS] 
N2 414 367 453 -- 98.5 

O2 359 353 401 438 89.6 

[P4442][DEP] 
N2 309 272 342 530 92.8 

O2 265 274 312 423 74.1 
*total experiment time: 57.5 min. 

 

Regarding the early weight loss region (Fig.2b), it seems again that the phosphate anion ILs (especially 

[P4442][DEP]) provoke a more pronounced descent, probably related to the water content (analogous to 

Fig.1b).  A comparison of the first the step of weight loss up to 275 ºC, depending on the ILs used, using 

reactive atmosphere (O2) and inert one (N2) showed that the initial weight losses and average rates were 

greater in the inert atmosphere than in the oxidising one for all ionic liquids with the exception of 

[P66614][(iC8)2PO2]. The oxygen presence alters the pathway of thermal degradation by initiating reactions 

of lower activation energy. This fact suggests that thermal degradation starts earlier in this IL in O2 
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atmosphere (see Table 3). It should be noted that this process is masked by weight loss processes, 

especially when heating rates above 1.5ºC/min were used, as in agreement with Menczel and Prime [84].  

Regarding the step of the greatest weight loss in oxidising atmosphere, it took place between 225-285ºC, 

200-400ºC, 320-500ºC, 275-525ºC and 200-525ºC for [P66614][(iC8)2PO2], [P66614][BEHP], [P66614][NTf2], 

[P44414][DBS] and [P4442][DEP], respectively. However, in the presence of nitrogen, the ranges of 

temperature in which the greatest weight loss occurred were generally wider, namely 225-475ºC, 200-

500ºC, 200-500ºC, 275-525ºC and 200-525ºC for the same ILs. Therefore, the decomposition temperature 

and thermal stability of ILs is strongly dependent on the selected anion [16]. In this case, the rate of 

weight loss does not show a clear tendency, possibly attributed to the different mechanisms for the 

degradation. Thus, the oxidation tends to show various steps, commonly two, whereas the decomposition 

exhibits usually one step. Hence, when thermo oxidative processes are involved, decomposition and 

oxidation take place concurrently. This implies both weight gain associated with the oxidation and weight 

loss due to the decomposition of the ILs, and this accounts for the declining tendency in mass over this 

temperature range. However, when nitrogen is employed, the weight is almost completely lost in the 

previous stage/stages. 

 

Table 3. Mass changes and rates in the first step of weight loss of the different ILs between 25-275ºC. 
 

 Reactive atmosphere (O2) Inert Atmosphere (N2) 

Ionic Liquid 
Tª  

Range 
(ºC) 

Weight 
loss  
(%) 

Rate   
(%·ºC-1) 

Tª  
range 
(ºC) 

Weight 
loss (%) 

Rate   
(%·ºC-1) 

[P66614][(iC8)2PO2] 25-225 2.31 1.15 ·10-2 25-225 1.43 7.20·10-3 
[P66614][BEHP] 25-200 0.78 4.50 ·10-3 25-200 4.08 2.33 ·10-2 
[P66614][NTf2] 25-200 0.19 1.10·10-3 25-200 0.38 2.10·10-3 
[P44414][DBS] 25-275 2.03 8.1·10-3 25-275 2.71 1.08 ·10-2 
[P4442][DEP] 25-200 3.10 1.77 ·10-2 25-200 5.70 3.26 ·10-2 
 

It is also noteworthy that the amount of residue obtained after TGA is larger when reactive atmosphere 

was employed (see Table 4) and therefore Wttotal loss is smaller under oxidative conditions. This is 

explained by the weight gain during the oxidation process. Besides, ILs containing phosphorus in both the 

cationic and anionic moiety, also presented greater values of residual content. This is due to the oxidation 

of phosphorus to P2O5, which partly remained in the residue. Such a result is in agreement with the data 
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reported by Keating et al. [82], who found Phosphorus in the ash of [P66614][NTf2] and [P66614][(iC8)2PO2] 

after thermogravimetric analysis in the range of 20-740ºC. 

 

Table 4. Residual content of different ILs after TGA at 600ºC 

 Reactive atmosphere (O2) Inert Atmosphere (N2) 
Ionic Liquid Residue at 600ºC (%)  Residue at 600ºC (%) 

[P66614][(iC8)2PO2] 15.4 0.35 
[P66614][BEHP] 18.1 6.5 
[P66614][NTf2] 3.3 1.2 
[P44414][DBS] 10.4 1.5 
[P4442][DEP] 25.9 7.2 
 

Fig. 3 shows the comparison of SDTA (single differential thermal analysis) curves in both atmospheres 

for all ILs tested.  
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Fig. 3. SDTA for all ILs obtained in both inert (nitrogen, ---) and reactive (oxygen, —) atmospheres at a 

heating rate of 10 ºC/min. 

 

In these curves, the ILs under study and an inert reference are conducted to undergo the same thermal 

cycles, recording differences in the temperature (∆T) and identifying physical and chemical phenomena 

causing heat changes (exothermic or endothermic), such as adsorption (exothermic), crystallisation 

(exothermic), vaporisation (endothermic), oxidation (exothermic) and so on. The mechanistic differences 

between thermal and thermo-oxidative degradation is clear in view of these results. The decomposition 

was determined to be endothermic if the SDTA temperature gradient was negative. Whilst in an inert 

(nitrogen) atmosphere the thermal decomposition implies a very low signal, exothermic signal 

measurement in the reactive (oxygen) atmosphere is related with an overlapped oxidation process. 

 

3.3. Kinetic analysis 

The above mentioned thermal stabilities have been evaluating using TGA at a single linear heating rate 

(10 ºC/min). The kinetics and mechanism of the thermal decomposition reaction were evaluated from the 

TG data according to the ICTAC Kinetics Committee recommendations [85,86]. As previously discussed, 

isothermal studies have shown that ILs exhibit appreciable decomposition at temperatures significantly 

lower than the values indicated by the onset temperature decomposition calculated from scanning TGA 

experiments. Therefore, in order to fully evaluate the long-term thermal stabilities and thermal 

decomposition of the studied ILs, it is necessary to identify global kinetics models.  

In this research study, several parameters such as the activation energy (E), the conversion and the 

degradation decomposition time were estimated as a function of temperature using both TG experimental 

data and KAS model-free kinetics (in an oxygen atmosphere). As model-free kinetics require at least 
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three dynamic curves with different heating rates, TGA curves obtained at 5, 10 and 20 ºC/min are shown 

in Fig. 4.  

 

 

 

Fig. 4. TGA of all ILs studied in a reactive (oxygen) atmosphere at heating rates of  

5 (---), 10 (—) and 20 ºC/min (···). 

 

Fig.4 shows the behavior of [P44414][DBS] and [P66614][BEHP] samples at lower heating rates, where the 

temperature values shift lower and consequently the total mass loss increases [87]. On the other hand, 

[P4442][DEP] behaved different: higher heating rates seem to activate the decomposition reaction and the 

total mass loss growths. Finally, it is hard to extract conclusions from heating rate variation with 
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[P66614][NTf2] and [P66614][(iC8)2PO2] samples. The model-free approach to kinetic analysis rests upon the 

isoconversional principle, according to which the reaction rate at a constant extent of conversion is only a 

function of temperature. This fact implies that curves plotted at different heating rates cannot intersect. If 

this issue happens, data obtained could lead to unrealistic conclusions [88]. In this research, the crossing 

curves issue happens at temperatures higher than 420 ºC. This fact can be observed in all samples and it is 

related to the wt.% obtained at the end of pyrolysis (char formation yield). Therefore, an interval of 

temperatures 200–420 ºC was chosen for model-free kinetics calculations. Fig. 5 shows the apparent 

activation energy versus thermal conversion process obtained by the KAS model-free kinetics 

methodology.  

 

Fig. 5. Apparent activation energy as a function of conversion derived from experiments using 5, 10 and 

20 ºC/min heating rates for the five ILs: () [P66614][(iC8)2PO2], () [P66614][BEHP], () [P66614][NTf2], 

() [P44414][DBS] and () [P4442][DEP]. Full scale image (left) and zoom at square region (right). 

 

In general, constant activation energy values should be expected in the case of a single reaction. 

However, the E profile obtained from Fig. 5 indicates that the decomposition mechanism is a function of 

the conversion degree. In addition, Fig.5 (right) shows that the activation energy (E) remained practically 

constant at low conversions (2–40%), with values between 50 and 120 kJ/mol. Table 5 exhibites the 

average values and their standard deviations. Therefore, the trend of relative nucleophilicities of the 

anions in this research work is (in decreasing nucleophilic strength): [P66614][BEHP] > [P4442][DEP] > 

[P66614][(iC8)2PO2] > [P44414][DBS] > [P66614][NTf2], according to the activation energy (E) values     

(Table 5). These results are in agreement with the delocalisation charge approach, where [P44414][DBS] 

and [P66614][NTf2] are the less nucleophilic ILs and therefore the most thermally stable ones. 
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Table 5. Apparent activation energy values (0.02 < α < 0.4) for the five ILs. 

Ionic liquids E (kJ/mol) 

[P66614][(iC8)2PO2] 81 ± 7 

[P66614][BEHP] 60 ± 3 

[P66614][NTf2] 115 ± 6 

[P44414][DBS] 113 ± 8 

[P4442][DEP] 79 ± 5 
 

In order to provide a more realistic description of the thermal stability of these samples, kinetic analysis 

was performed in oxidising conditions by application of the model-free KAS isoconversional method. 

This methodology allows one to determine the change in the apparent activation energy during the 

thermo-oxidative process without choosing the reaction model. Results are shown in Fig. 6.  

 

 

Fig. 6. Estimated isoconversional curves at 3, 5, 7 and 10 % of conversion for the five ILs:                   

() [P66614][(iC8)2PO2], () [P66614][BEHP], () [P66614][NTf2], () [P44414][DBS] and () 

[P4442][DEP]. 

From Fig. 6, it is possible to estimate the time required for a fixed mass loss (conversion) of the ionic 

liquid at a given temperature. If 200º C is used, [P4442][DEP] reached 10% conversion in about 25 min, 

whereas [P66614][(iC8)2PO2] and [P66614][BEHP] needed more than 100 min. Finally, [P66614][NTf2] and 
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[P44414][DBS] did not achieve the 10% mark in the total duration of the test (600 min). The analysis would 

be similar for the others conversion rates (3%, 5% and 7%). In addition, it is possible to predict the 

sample behaviour at isothermal conditions. The model-free methodology allows one to estimate the 

sample performance in isothermal conditions. In order to check these results, some isothermal 

experiments were carried out for the [P66614][(iC8)2PO2] sample (Fig. 7). Isothermal experiments indicate 

that thermo-oxidative decomposition reaches values of 6, 22 and 23% of conversion when the sample is 

heated at 200, 225 and 250 ºC, respectively, for 90 min. In addition, it is possible to predict the sample 

behaviour in isothermal conditions at a given temperature (T0) by using Eq. (10) with non-isothermal 

kinetic data. In order to solve the mentioned equation, the integral is determined using the approximate 

formula obtained by Wanjun et al. [89]. Thus, the temperature (in ºC) at which each conversion value is 

reached in the selected time could be obtained [66]. The deviations between experimental and model 

values may be linked to not taking into account the evaporation kinetics. Anyway, From Fig. 6 data, 

results obtained at low conversions (α < 0.1) by the application of the model-free methodology with       

T0 = 200ºC are in good agreement with those obtained by experimental isothermal analysis. Although this 

result seems to support the decision concerning evaporation, further research considering this evaporation 

kinetic should be conducted in all temperature range to validate completely the model [65]. On the other 

hand, differences between 200 and 225 isotherms prove the previous statement regarding the 

overestimation of long-term thermal stability of the ILs with conducting standard TGA experiments. If 

the 320 ºC value of Tonset calculated from classic dynamic TGA analysis were precise, the 225 and 250 

isotherms should be closer to 200 ºC one. 

 

Fig. 7. Isothermal scans for [P66614][(iC8)2PO2] in a reactive (oxygen) atmosphere. 
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4. Conclusions 

The thermal degradation of five phosphonium cation-based ILs, [P66614][BEHP], [P66614][(iC8)2PO2], 

[P66614][NTf2], [P44414][DBS] and [P4442][DEP], was studied in both nitrogen (inert) and oxygen (reactive) 

atmospheres using dynamic and isothermal approaches. From the obtained results, the following 

conclusions can be drawn:  

 

• Thermal degradation of ILs is clearly dominated by the nature of the anion, endowing the 

weakly-coordinating-anion ILs (such as [NTf2] and [DBS] based) with a great thermal stability. 

On the basis that the pathway with the lowest activation free energy (E) would be expected to be 

the most nucleophilic, the trend in decreasing nucleophilic strength is as follows: [P66614][BEHP] 

> [P4442][DEP] > [P66614][(iC8)2PO2] > [P44414][DBS] > [P66614][NTf2]. Therefore, both 

approaches are in good agreement.  

• Although the atmosphere has a clear influence on the thermal degradation mechanism, the trend 

of the thermal stability among different samples did not change. Both temperatures of thermal 

degradation (Tonset and T10%) presented the [P66614][NTf2] and [P44414][DBS] as the most thermal 

stable ILs in both pyrolytic and oxidising conditions.  

• Despite of the fact that the decomposition mechanism is a function of the conversion degree, the 

activation energy (E) remained practically constant at low conversions, with values ranging from 

60–115 kJ/mol for all ILs studied. 

• The long-term thermal stability of the ILs is also overestimated with conducting standard TGA 

experiments; so the use of isoconversional methods is more appropriate. 

• The results from both the application of the model-free methodology and the isothermal 

experiments are in good agreement especially at low conversions, so the former can be used to 

predict at lower costs the long-term thermal stability. 

• The determination of thermal models, especially those which can predict the long-term thermal 

stability, is an interesting research topic from lubrication science approach in order to predict the 

lifetime of lubricants and additives. 

• The physicochemical properties of phosphonim cation-based ILs (conferred by the size, 

symmetry and structure of their ions) combined with an excellent tribological behaviour make 

them excellent candidates for being used as a lubricant additive. The utilization of this kind of 
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substances as an additive in motor oils should take into account current and future specifications 

for motor oils (e.g. PC-11, ILSAC GF-5 and ILSAC GF-6) which limit phosphorus 

concentration under 800 ppm. 

 

5. Nomenclature 

A (m3·mol-1)n-1s-1 Pre-exponential factor 

E kJ/mol Activation Energy 

MIL mol Molar mass of the ionic liquid 

B m/s Mass transfer coefficient 

A m2 Surface area in contact with the gas phase 

pvap Pa Vapour pressure 

f(α) - Reaction model 

k(T) J/K Temperature dependent constant 

R J/K/mol Gas constant 

t s Time 

T ºC Temperature 

Ton ºC Onset Temperature 

T10 ºC Temperature at 10% of mass loss 

T0 ºC Arbitrary Temperature to a given extent of reaction,  α 

mi kg Initial mass 

mf kg Final mass 

mt kg Mass at given time, t 

α - Extent of reaction 

β ºC/min Heating rate 
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