783 research outputs found
Resident Attitudes toward Dark Tourism, a Perspective of Place-based Identity Motives
Place-based identity theories prove to be valid in better understanding resident attitudes towards support for tourism. Yet, its effectiveness is not verified in the context of dark tourism and resident attitudes towards dark tourism remains unknown. Based on a survey of 526 local residents in China’s Yingxiu, the epicentre of the Great Wenchuan Earthquake, the authors examined the relationships between the local residents’ place-based identity motives and their attitudes towards support for dark tourism development. Results show that the motive of ‘belonging/meaning’ is one of the most important determinants; residents’ involvement in dark tourism and bereavement affect their identity motives and attitudes towards support for dark tourism. The theoretical contributions and managerial implications are discussed
Demo: OpenVLC1.0 Platform for Research in Visible Light Communication Networks
Built around a cost-effective embedded Linux platform, OpenVLC is an open source project (www.openvlc.org) for research in Visible Light Communication (VLC) Networks. In this work, we introduce and demonstrate the OpenVLC1.0 platform, a flexible, software-defined, and low-cost research platform. OpenVLC1.0 consists of a simple electronic design, and a new driver of the Linux operating system that implements the MAC, part of the PHY layers and it offers an interface to Internet protocols. The electronics of OpenVLC implement a flexible optical front-end consisting of commodity low- and high-power Light Emitting Diodes (LEDs), photodiodes (PDs), and ancillary electronic circuitry. In order to quickly start playing with VLC Networks, we have designed and developed a printed circuit board (OpenVLC1.0 cape). The cape can be plugged into the main embedded Beaglebone board. Researchers can then swiftly build PHY and MAC protocols using the software implementation (OpenVLC1.0 driver), and prototype innovative solutions in realistic network setups. In this demo, we show that OpenVLC1.0 can switch between different MAC protocols, it can choose different optical channel for data transmission and reception, and it can be employed jointly with standard TCP/IP diagnostic tools.TRUEpu
An evaluation of membrane properties and process characteristics of a scaled-up pressure retarded osmosis (PRO) process
YesThis work presents a systematic evaluation of the membrane and process characteristics of a scaled-up pressure retarded osmosis (PRO). In order to meet pre-defined membrane economic viability ( ≥ 5 W/m2), different operating conditions and design parameters are studied with respect to the increase of the process scale, including the initial flow rates of the draw and feed solution, operating pressure, membrane permeability-selectivity, structural parameter, and the efficiency of the high-pressure pump (HP), energy recovery device (ERD) and hydro-turbine (HT). The numerical results indicate that the performance of the scaled-up PRO process is significantly dependent on the dimensionless flow rate. Furthermore, with the increase of the specific membrane scale, the accumulated solute leakage becomes important. The membrane to achieve the optimal performance moves to the low permeability in order to mitigate the reverse solute permeation. Additionally, the counter-current flow scheme is capable to increase the process performance with a higher permeable and less selectable membrane compared to the co-current flow scheme. Finally, the inefficiencies of the process components move the optimal APD occurring at a higher dimensionless flow rate to reduce the energy losses in the pressurization and at a higher specific membrane scale to increase energy generation
Performance Analysis of Friction Stir Welded Lightweight Aluminum Alloy Sheet
The present research envisaged the performance analysis of a 1-mm thick 6061-T6 aluminum alloy sheet welded by the friction stir welding technique, using optical microscopy, micro-hardness measurement, a tensile test, a friction and wear test, and a salt spray corrosion test. It was found that the grain in the welded zone obtained was refined under each parameter. When the rotating speed of the tool was 15,000 rpm and the traveling speed of the tool was 300 mm·min-1, the tensile strength of the welded zone was highest, i.e. 74.8% of the base metal. Furthermore, the hardness distribution curve of the welded zone was of the 'W' type under each parameter, but the hardness value was lower than that of the base metal. The friction coefficient of the welded zone was lower than that of the base metal under each parameter, and the wear form was found to be mainly adhesive wear accompanied by abrasive wear. The welded zone and the base metal were subjected to salt spray corrosion after 12 hours under each parameter, which had a negative effect on the quality. However, after 12 hours of subsequent corrosion, the quality of each sample and the base material was not obvious
Observationally constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China
16 pags., 8 figs., 2 tabs.An observation-based model coupled to the Master Chemical Mechanism (V3.3.1) and constrained by a full suite of observations was developed to study atmospheric oxidation capacity (AOC), OH reactivity, OH chain length and HOx (=OHCHO) budget for three different ozone (O3) concentration levels in Shanghai, China. Five months of observations from 1 May to 30 September 2018 showed that the air quality level is lightly polluted or worse (Ambient Air Quality Index, AQI, of > 100) for 12 d, of which ozone is the primary pollutant for 10 d, indicating ozone pollution was the main air quality challenge in Shanghai during summer of 2018. The levels of ozone and its precursors, as well as meteorological parameters, revealed the significant differences among different ozone levels, indicating that the high level of precursors is the precondition of ozone pollution, and strong radiation is an essential driving force. By increasing the input JNO value by 40 %, the simulated O3 level increased by 30 %-40 % correspondingly under the same level of precursors. The simulation results show that AOC, dominated by reactions involving OH radicals during the daytime, has a positive correlation with ozone levels. The reactions with non-methane volatile organic compounds (NMVOCs; 30 %-36 %), carbon monoxide (CO; 26 %-31 %) and nitrogen dioxide (NO; 21 %-29 %) dominated the OH reactivity under different ozone levels in Shanghai. Among the NMVOCs, alkenes and oxygenated VOCs (OVOCs) played a key role in OH reactivity, defined as the inverse of the OH lifetime. A longer OH chain length was found in clean conditions primarily due to low NO in the atmosphere. The high level of radical precursors (e.g., O3, HONO and OVOCs) promotes the production and cycling of HOx, and the daytime HOx primary source shifted from HONO photolysis in the morning to O3 photolysis in the afternoon. For the sinks of radicals, the reaction with NO dominated radical termination during the morning rush hour, while the reactions of radical-radical also contributed to the sinks of HOx in the afternoon. Furthermore, the top four species contributing to ozone formation potential (OFP) were HCHO, toluene, ethylene and m/p-xylene. The concentration ratio (∼ 23 %) of these four species to total NMVOCs is not proportional to their contribution (∼ 55 %) to OFP, implying that controlling key VOC species emission is more effective than limiting the total concentration of VOC in preventing and controlling ozone pollution.This research has been supported by the National Key Research and Development Program of China (grant nos.
2017YFC0210002, 2016YFC0200401 and 2018YFC0213801),
the National Natural Science Foundation of China (grant nos.
41775113, 21777026 and 21607104), the Shanghai Pujiang Talent
Program (grant no. 17PJC015), and the Shanghai Rising-Star Program (grant no. 18QA1403600). This work was also funded by The
Program for Professor of Special Appointment (Eastern Scholar) at
Shanghai Institutions of Higher Learning and Shanghai Thousand
Talents Program
Application of Fibonacci Sequence and Lucas Sequence on the Design of the Toilet Siphon Pipe Shape
The purpose of this study was to explore the method for designing the toilet siphon pipe shape to improve flushing performance. The Fibonacci sequence and the Lucas sequence were used to design the structural parameters of the siphon pipe. The flushing processes of the toilet were simulated using the computational fluid dynamics (CFD) method to analyze the flushing performance under different siphon pipe shapes. Experimental studies were conducted to verify the reliability of the simulation results. The results indicated that when the Lucas numbers and the Fibonacci numbers were utilized to regulate the curvature of the siphon pipe in the Xi direction and the Yj direction respectively, the flushing performance of the toilet was optimal. In order to obtain better flushing performance, the curvature of the siphon pipe should be smooth and have obvious transitions at the connections of different sections. When the overall size of the siphon pipe is kept constant, a short siphon pipe length is helpful for the improvement of toilet flushing performance
Embedding and Duality of Matrix-Weighted Modulation Spaces
In this paper, we give a approximation characterization, embedding properties and the duality of matrix weighted modulation spaces
Blow-Up of Solutions to a Novel Two-Component Rod System
We consider a novel two-component rod system which is closely connected to the shallow water theory. The present work is mainly concerned with the blow-up mechanism of strong solutions; we establish new conditions in view of some special classes of initial value to guarantee finite time blow-up of solutions
Study on the Influence of Toilet Siphon Pipe Shape on Flushing Performance
The goal of this work was to explore the influence of toilet siphon pipe shape on flushing performance. The flushing processes of a toilet under different shape parameters were simulated by using computational fluid dynamics (CFD) with a volume of fluid (VOF) multiphase model. The effects of siphon pipe shape on flushing performance were analyzed in detail. The interpretation of the simulation results was experimentally validated. The results reveal that a toilet may obtain good flushing performance under one single shape parameter when the climbing angle, the arc width, the arc height, the pipe diameter, the climbing width, and the climbing height are about 48°, 45 mm, 210 mm, 50 mm, 90 mm and 30 mm, respectively. With the increase of the siphon pipe diameter, the toilet flushing performance peaks in the range between 50 and 53 mm rather than continuing to improve. In order to reasonably evaluate the flushing effect of the toilet, all flow parameters on a characteristic cross section of the siphon pipe, including the average velocity, the average pressure and the average mass flow rate, should be comprehensively considered instead of one single parameter. The findings of this study provide a reference for the pipe shape design of toilets
- …
