3,124 research outputs found

    Modeling flocculation processes: continuous particle size distribution method

    Get PDF
    The flocculation process of cohesive sediment suspended in water consists of aggregation of the fine particles and breakup of the large flocs. The population balance equation (PBE) is a statement of continuity for particulate systems, and it is used to model the flocculation process and predict the particle size distribution (PSD). Different numerical methods are developed to solve the PBE, however most of the methods have difficulties in representing the continuous PSD or improving computational efficiency. In this research, the B-spline FEM and Galerkin FEM are studied to simulate the continuous PSD. The B-spline FEM solves the PBE over the whole domain, which is truncated to finite domain; the open non-uniform B-splines are used as basis function to approximate the PSD; the curve of PSD is required to be smooth enough. The Galerkin FEM discretizes the PBE on each sub-domain (the whole domain is split to several sub-domains), and it is used to solve less-smooth problems. The adaptive technique is applied to readjust the computational grid (particle size domain) to improve computational efficiency and the accuracy, and it is also applied in varied time step to get suitable time step to improve the stability. The analytical solutions of the PBE in special conditions and the experimental data are used to validate both B-spline FEM and Galerkin FEM, and the results are compared with that of the classical DPBE method. It shows that both B-spline FEM and Galerkin FEM can solve the PBE and simulate continuous PSD accurately and efficiently

    Statistical analyses on multi-scale features of monitoring data from health monitoring system in long cable supported bridges

    Get PDF
    AbstractStrain-time histories and other data acquired from a structural health monitoring system (SHMS) installed on a bridge reflect the real-time structural response of the bridge under actual service and environmental loading. It is necessary to understand the inherent features of the data if we want to have confidence in using them to assess the health state or detect potential damage in the structure. This paper aims at exploring the inherent features of strain-time histories data from SHMS in order to find out their behavior in multiple temporal scales and to obtain reliable, clean and normalized data at the dominant scale of stresses inducing fatigue. Firstly, the strain history data from SHMS installed on Runyang Yangtze Bridges (RYB) were analyzed within three typical temporal scales to explore their different characteristics and their own cut-off frequency which span different orders of magnitude. Then, based on the description of the multi-scale features of the monitored data, a further investigation of the dominant scale controlling fatigue failures was carried out. The result shows that, the strain data corresponding to the typical temporal scales of 106, 103 and 100 sec are caused by temperature change, with cut-off frequency fc,1 in the 10−2 Hz range, by train load, with fc,2 in the 10−1 Hz range and by truck load, with fc,3 in the 100 Hz range. Noise shows significant coupling effect when coarse scale strain data are used for the evaluation, which may lead to significant error even it is in small level acceptable in engineering analyses

    Design and implementation of an electro-optical backplane with pluggable in-plane connectors

    Get PDF
    The design, implementation and characterisation of an electro-optical backplane and an active pluggable in-plane optical connector technology is presented. The connection architecture adopted allows line cards to be mated to and unmated from a passive electro-optical backplane with embedded polymeric waveguides. The active connectors incorporate a photonics interface operating at 850 nm and a mechanism to passively align the interface to the optical waveguides embedded in the backplane. A demonstration platform has been constructed to assess the viability of embedded electro-optical backplane technology in dense data storage systems. The demonstration platform includes four switch cards, which connect both optically and electronically to the electro-optical backplane in a chassis. These switch cards are controlled by a single board computer across a Compact PCI bus on the backplane. The electrooptical backplane is comprised of copper layers for power and low speed bus communication and one polymeric optical layer, wherein waveguides have been patterned by a direct laser writing scheme. The optical waveguide design includes densely arrayed multimode waveguides with a centre to centre pitch of 250ÎŒm between adjacent channels, multiple cascaded waveguide bends, non-orthogonal crossovers and in-plane connector interfaces. In addition, a novel passive alignment method has been employed to simplify high precision assembly of the optical receptacles on the backplane. The in-plane connector interface is based on a two lens free space coupling solution, which reduces susceptibility to contamination. Successful transfer of 10.3 Gb/s data along multiple waveguides in the electro-optical backplane has been demonstrated and characterised

    Context-dependent strategies of food allocation among offspring in a facultative cooperative breeder

    Get PDF
    Natural selection should favor adoption of parental strategies that maximize fitness when allocating investment among offspring. In birds, begging displays often convey information of nestling need and quality, allowing parents to make adaptive food allocation decisions. We investigated how adults utilized cues likely to represent nestling competitive ability (begging position) and need (begging intensity) and a cue independent of nestling control (nestling sex) to distribute food among nestlings in a facultative cooperative breeder, the black-throated tit (Aegithalos concinnus). We found that parents reduced their efforts when helped, suggesting that parents of helped broods would have the potential to satisfy nestling needs more than unhelped parents. This suggestion was supported by the fact that nestling mass increased faster in helped than in unhelped nests. We found no effect of nestling sex on food allocation, but, as predicted, we found that adults responded differently to begging signals in relation to the presence of helpers and brood size. First, helped parents were more responsive to nestling begging intensity than parents without helpers. Second, female parents and helpers had a stronger preference for nestling begging position in large than in small broods. Third, the preference for nestling begging position was greater for unhelped than for helped female parents. These results provide evidence that carers adjust their preference for different offspring begging signals based on availability of food resources

    Gravitational Collapse of Phantom Fluid in (2+1)-Dimensions

    Full text link
    This investigation is devoted to the solutions of Einstein's field equations for a circularly symmetric anisotropic fluid, with kinematic self-similarity of the first kind, in (2+1)(2+1)-dimensional spacetimes. In the case where the radial pressure vanishes, we show that there exists a solution of the equations that represents the gravitational collapse of an anisotropic fluid, and this collapse will eventually form a black hole, even when it is constituted by the phantom energy.Comment: 10 page

    A9 A FRAGMENT OF TYPE II PROCOLLAGEN CHONDROSTATIN, INHIBITS ANGIOGENESIS

    Get PDF

    Homothetic Self-Similar Solutions of the Three-Dimensional Brans-Dicke Gravity

    Full text link
    All homothetic self-similar solutions of the Brans-Dicke scalar field in three-dimensional spacetime with circular symmetry are found in closed form.Comment: latex, five pages, without figur

    Quantum wave equation of photon

    Full text link
    In this paper, we give the quantum wave equations of single photon when it is in the free or medium space. With these equations, we can study light interference and diffraction with quantum approach. Otherwise, they can be applied in quantum optics and photonic crystal.Comment: 8 pages, 0 figure

    Autonomous stochastic resonance in fully frustrated Josephson-junction ladders

    Full text link
    We investigate autonomous stochastic resonance in fully frustrated Josephson-junction ladders, which are driven by uniform constant currents. At zero temperature large currents induce oscillations between the two ground states, while for small currents the lattice potential forces the system to remain in one of the two states. At finite temperatures, on the other hand, oscillations between the two states develop even below the critical current; the signal-to-noise ratio is found to display array-enhanced stochastic resonance. It is suggested that such behavior may be observed experimentally through the measurement of the staggered voltage.Comment: 6 pages, 11 figures, to be published in Phys. Rev.
    • 

    corecore