6,964 research outputs found

    Creation of NOON states by double Fock-state/Bose-Einstein condensates

    Full text link
    NOON states (states of the form N>a0>b+0>aN>b|N>_{a}|0>_{b}+|0>_{a}|N>_{b} where aa and bb are single particle states) have been used for predicting violations of hidden-variable theories (Greenberger-Horne-Zeilinger violations) and are valuable in metrology for precision measurements of phase at the Heisenberg limit. We show theoretically how the use of two Fock state/Bose-Einstein condensates as sources in a modified Mach Zender interferometer can lead to the creation of the NOON state in which aa and bb refer to arms of the interferometer and NN is the total number of particles in the two condensates. The modification of the interferometer involves making conditional ``side'' measurements of a few particles near the sources. These measurements put the remaining particles in a superposition of two phase states, which are converted into NOON states by a beam splitter. The result is equivalent to the quantum experiment in which a large molecule passes through two slits. The NOON states are combined in a final beam splitter and show interference. Attempts to detect through which ``slit'' the condensates passed destroys the interference.Comment: 8 pages 5 figure

    A summer climate regime over Europe modulated by the North Atlantic Oscillation

    Get PDF
    Recent summer heat waves in Europe were found to be preceded by precipitation deficits in winter. Numerical studies suggest that these phenomena are dynamically linked by land-atmosphere interactions. However, there exists as yet no complete observational evidence that connects summer climate variability to winter precipitation and the relevant circulation patterns. In this paper, we investigate the functional responses of summer mean and maximum temperature (June–August, <i>T</i><sub>mean</sub> and <i>T</i><sub>max</sub>) as well as soil moisture proxied by the self-calibrating Palmer drought severity index (<i>scPDSI</i>) to preceding winter precipitation (January–March, <i>P</i><sub>JFM</sub>) for the period 1901–2005. All the analyzed summer fields show distinctive responses to <i>P</i><sub>JFM</sub> over the Mediterranean. We estimate that 10 ~ 15% of the interannual variability of <i>T</i><sub>max</sub> and <i>T</i><sub>mean</sub> over the Mediterranean is statistically forced by <i>P</i><sub>JFM</sub>. For the <i>scPDSI</i> this amounts to 10 ~ 25%. Further analysis shows that these responses are highly correlated to the North Atlantic Oscillation (NAO) regime over the Mediterranean. We suggest that NAO modulates European summer temperature by controlling winter precipitation that initializes the moisture states that subsequently interact with temperature. This picture of relations between European summer climate and NAO as well as winter precipitation suggests potential for improved seasonal prediction of summer climate for particular extreme events

    Maghemite-like regions at crossing of two antiphase boundaries in doped BiFeO3

    Get PDF
    We report the observation of a novel structure at the point where two antiphase boundaries cross in a doped bismuth ferrite of composition (Bi0.85Nd0.15)(Fe0.9Ti0.1)O0.3. The structure was investigated using a combination of high angle annular dark field imaging and electron energy loss spectroscopy spectrum imaging in the scanning transmission electron microscope. A three-dimensional model was constructed by combining the position and chemistry data with previous results and assuming octahedral coordination of all Fe and Ti atoms. The resulting structure shows some novel L shaped arrangements of iron columns, which are coordinated in a similar manner to FeO6 octahedra in maghemite. It is suggested that this may lead to local ferromagnetic orderings similar to those in maghemite

    Novel nanorod precipitate formation in neodymium and titanium codoped bismuth ferrite

    Get PDF
    The discovery of unusual nanorod precipitates in bismuth ferrite doped with Nd and Ti is reported. The atomic structure and chemistry of the nanorods are determined using a combination of high angle annular dark field imaging, electron energy loss spectroscopy, and density functional calculations. It is found that the structure of the BiFeO3 matrix is strongly modified adjacent to the precipitates; the readiness of BiFeO3 to adopt different structural allotropes in turn explains why such a large axial ratio, uncommon in precipitates, is stabilized. In addition, a correlation is found between the alignment of the rods and the orientation of ferroelastic domains in the matrix, which is consistent with the system's attempt to minimize its internal strain. Density functional calculations indicate a finite density of electronic states at the Fermi energy within the rods, suggesting enhanced electrical conductivity along the rod axes, and motivating future investigations of nanorod functionalities

    Characterisation of the effects of salicylidene acylhydrazide compounds on type three secretion in Escherichia coli O157:H7

    Get PDF
    Recent work has highlighted a number of compounds that target bacterial virulence by affecting gene regulation. In this work, we show that small-molecule inhibitors affect the expression of the type III secretion system (T3SS) of <i>Escherichia coli</i> O157:H7 in liquid culture and when the bacteria are attached to bovine epithelial cells. The inhibition of T3SS expression resulted in a reduction in the capacity of the bacteria to form attaching and effacing lesions. Our results show a marked variation in the ability of four structurally-related compounds to inhibit the T3SS of a panel of isolates. Using transcriptomics, we provide a comprehensive analysis of the conserved- and inhibitor-specific transcriptional responses to the four compounds. These analyses of gene expression show that numerous virulence genes, located on horizontally-acquired DNA elements, are affected by the compounds but the number of genes significantly affected varied markedly between the compounds. Overall, we highlight the importance of assessing the effect of such "anti-virulence" agents on a range of isolates and discuss the possible mechanisms which may lead to the co-ordinate down-regulation of horizontally acquired virulence genes

    Friction and Adhesion in the Hair Bundle's Glycocalyx

    Get PDF

    PMH12 National Trends of Psychotropic Medication Use among Patients Diagnosed with Anxiety Disorders: Results from the Medical Expenditure Panel Survey 2004-2009

    Get PDF

    Breakup of a Stoner model for the 2D ferromagnetic quantum critical point

    Full text link
    Re-interpretation of the results by [A. V. Chubukov et. al., Phys. Rev. Lett. 90, 077002 (2003)] leads to the conclusion that ferromagnetic quantum critical point (FQCP) cannot be described by a Stoner model because of a strong interplay between the paramagnetic fluctuations and the Cooper channel, at least in two dimensions.Comment: 5 pages, 2 EPS figures, RevTeX

    Hopping Conduction in Disordered Carbon Nanotubes

    Full text link
    We report electrical transport measurements on individual disordered carbon nanotubes, grown catalytically in a nanoporous anodic aluminum oxide template. In both as-grown and annealed types of nanotubes, the low-field conductance shows as exp[-(T_{0}/T)^{1/2}] dependence on temperature T, suggesting that hopping conduction is the dominant transport mechanism, albeit with different disorder-related coefficients T_{0}. The field dependence of low-temperature conductance behaves an exp[-(xi_{0}/xi)^{1/2}] with high electric field xi at sufficiently low T. Finally, both annealed and unannealed nanotubes exhibit weak positive magnetoresistance at low T = 1.7 K. Comparison with theory indicates that our data are best explained by Coulomb-gap variable range hopping conduction and permits the extraction of disorder-dependent localization length and dielectric constant.Comment: 10 pages, 5 figure

    Fluctuation regimes of soil moisture in ERA-40 re-analysis data

    Get PDF
    Soil moisture variability is analysed in the re-analysis data ERA-40 of the European Centre for Medium-Range Weather Forecasts (ECMWF) which includes four layers within 189 cm depth. Short-term correlations are characterised by an e-folding time scale assuming an exponential decay, whilst long-term memory is described by power law decays with exponents determined by detrended fluctuation analysis. On a global scale, the short-term variability varies congruently with long-term memory in the surface layer. Key climatic regions (Europe, Amazon and Sahara) reveal that soil moisture time series are non-stationary in arid regions and in deep layers within the time horizon of ERA-40. The physical processes leading to soil moisture variability are linear according to an analysis of volatility (the absolute differences), which is substantiated by surrogate data analysis preserving the long-term memory
    corecore