64 research outputs found

    Bio-Inspired Adhesive Footpad for Legged Robot Climbing under Reduced Gravity: Multiple Toes Facilitate Stable Attachment

    Get PDF
    This paper presents the design of a legged robot with gecko-mimicking mechanism and mushroom-shaped adhesive microstructure (MSAMS) that can climb surfaces under reduced gravity. The design principle, adhesion performance and roles of different toes of footpad are explored and discussed in this paper. The effect of the preload velocity, peeling velocity and thickness of backing layering on the reliability of the robot are investigated. Results show that pull-force is independent of preload velocity, while the peeling force is relying on peeling velocity, and the peel strength increased with the increasing thickness of the backing layer. The climbing experiments show that the robot can climb under mimic zero gravity by using multiple toes facilitating adhesion. The robot with new type of footpads also provides a good platform for testing different adhesive materials for the future space applications

    Adaptive Tuning of Robotic Polishing Skills based on Force Feedback Model

    Full text link
    Acquiring human skills offers an efficient approach to tackle complex task planning challenges. When performing a learned skill model for a continuous contact task, such as robot polishing in an uncertain environment, the robot needs to be able to adaptively modify the skill model to suit the environment and perform the desired task. The environmental perturbation of the polishing task is mainly reflected in the variation of contact force. Therefore, adjusting the task skill model by providing feedback on the contact force deviation is an effective way to meet the task requirements. In this study, a phase-modulated diagonal recurrent neural network (PMDRNN) is proposed for force feedback model learning in the robotic polishing task. The contact between the tool and the workpiece in the polishing task can be considered a dynamic system. In comparison to the existing feedforward neural network phase-modulated neural network (PMNN), PMDRNN combines the diagonal recurrent network structure with the phase-modulated neural network layer to improve the learning performance of the feedback model for dynamic systems. Specifically, data from real-world robot polishing experiments are used to learn the feedback model. PMDRNN demonstrates a significant reduction in the training error of the feedback model when compared to PMNN. Building upon this, the combination of PMDRNN and dynamic movement primitives (DMPs) can be used for real-time adjustment of skills for polishing tasks and effectively improve the robustness of the task skill model. Finally, real-world robotic polishing experiments are conducted to demonstrate the effectiveness of the approach.Comment: This paper has been accepted by The 2023 IEEE International Conference on Robotics and Biomimetics (IEEE ROBIO 2023

    Immunohistochemical localization of mu opioid receptor in the marginal division with comparison to patches in the neostriatum of the rat brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mu opioid receptor (MOR), which plays key roles in analgesia and also has effects on learning and memory, was reported to distribute abundantly in the patches of the neostriatum. The marginal division (MrD) of the neostriatum, which located at the caudomedial border of the neostriatum, was found to stain for enkephalin and substance P immunoreactivities and this region was found to be involved in learning and memory in our previous study. However, whether MOR also exists in the MrD has not yet been determined.</p> <p>Methods</p> <p>In this study, we used western blot analysis and immunoperoxidase histochemical methods with glucose oxidase-DAB-nickel staining to investigate the expression of MOR in the MrD by comparison to the patches in the neostriatum.</p> <p>Results</p> <p>The results from western blot analyses revealed that the antibody to MOR detected a 53 kDa protein band, which corresponded directly to the molecular weight of MOR. Immunohistochemical results showed that punctate MOR-immunoreacted fibers were observed in the "patch" areas in the rostrodorsal part of the neostriatum but these previous studies showed neither labelled neuronal cell bodies, nor were they shown in the caudal part of the neostriatum. Dorsoventrally oriented dark MOR-immunoreactive nerve fibers with individual labelled fusiform cell bodies were firstly observed in the band at the caudomedial border, the MrD, of the neostriatum. The location of the MOR-immunoreactivity was in the caudomedial border of the neostriatum. The morphology of the labelled fusiform neuronal somatas and the dorsoventrally oriented MOR-immunoreacted fibers in the MrD was distinct from the punctate MOR-immunoreactive diffuse mosaic-patterned patches in the neostriatum.</p> <p>Conclusions</p> <p>The results indicated that MOR was expressed in the MrD as well as in patches in the neostriatum of the rat brain, but with different morphological characteristics. The punctate MOR-immunoreactive and diffuse mosaic-patterned patches were located in the rostrodorsal part of the neostriatum. By contrast, in the MrD, the dorsoventrally parallel oriented MOR-immunoreactive fibers with individual labelled fusiform neuronal somatas were densely packed in the caudomedial border of the neostriatum. The morphological difference in MOR immunoreactivity between the MrD and the patches indicated potential functional differences between them. The MOR most likely plays a role in learning and memory associated functions of the MrD.</p

    Grade-control outdoor turning flight of robo-pigeon with quantitative stimulus parameters

    Get PDF
    IntroductionThe robo-pigeon using homing pigeons as a motion carrier has great potential in search and rescue operations due to its superior weight-bearing capacity and sustained flight capabilities. However, before deploying such robo-pigeons, it is necessary to establish a safe, stable, and long-term effective neuro-electrical stimulation interface and quantify the motion responses to various stimuli.MethodsIn this study, we investigated the effects of stimulation variables such as stimulation frequency (SF), stimulation duration (SD), and inter-stimulus interval (ISI) on the turning flight control of robo-pigeons outdoors, and evaluated the efficiency and accuracy of turning flight behavior accordingly.ResultsThe results showed that the turning angle can be significantly controlled by appropriately increasing SF and SD. Increasing ISI can significantly control the turning radius of robotic pigeons. The success rate of turning flight control decreases significantly when the stimulation parameters exceed SF &gt; 100 Hz or SD &gt; 5 s. Thus, the robo-pigeon's turning angle from 15 to 55° and turning radius from 25 to 135 m could be controlled in a graded manner by selecting varying stimulus variables.DiscussionThese findings can be used to optimize the stimulation strategy of robo-pigeons to achieve precise control of their turning flight behavior outdoors. The results also suggest that robo-pigeons have potential for use in search and rescue operations where precise control of flight behavior is required

    Eclipsing Binaries From the CSTAR Project at Dome A, Antarctica

    Get PDF
    The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About 20,00020,000 light curves in the i band were obtained lasting from March to July, 2008. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb--Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis and locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence (EBAI) method. The primary and the secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.Comment: 41 pages, 12 figures; published online in ApJ

    The Whole-Genome Sequencing and Hybrid Assembly of Mytilus coruscus

    Get PDF
    The hard-shelled mussel (Mytilus coruscus) is an economically important shellfish, which has been cultivated for the last decade. Due to over-exploitation, most mussel stocks have dramatically declined. Efforts to study this species' natural distribution, genetics, breeding and cultivation have been hindered by the lack of a high-quality reference genome. To address this, we produced a hybrid high-quality reference genome of M. coruscus using a long-read platform to assemble the genome and short-reads, high-quality technology to accurately correct for sequence errors. The genome was assembled into 10,484 scaffolds, a total length of 1.90 Gb and a scaffold N50 of 898 kb. Ab initio annotation of the M. coruscus genome assembly identified a total of 42,684 genes. This accurate, reference genome of M. coruscus provides an essential resource with the advantage of enabling the genome-scale selective breeding of M. coruscus. More importantly it will also help the deciphering of the speciation and local adaptation of the Mytilus species

    Mapping and validation of sex-linked SNP markers in the swimming crab Portunus trituberculatus

    Get PDF
    Portunus trituberculatus is one of the most commercially important marine crustacean species for both aquaculture and fisheries in Southeast and East Asia. Production of monosex female stocks is attractive in commercial production since females are more profitable than their male counterparts. Identification and mapping of the sex-linked locus is an efficient way to elucidate the mechanisms of sex determination in the species and support the development of protocols for monosex female production. In this study, a sex-averaged map and two sex-specific genetic maps were constructed based on 2b-restriction site-associated DNA sequencing. A total of 6349 genetic markers were assigned to 53 linkage groups. Little difference was observed in the pattern of sex-specific recombination between females and males. Association analysis and linkage mapping identified 7 markers strongly associated with sex, four of which were successfully mapped on the extremity of linkage group 22. Females were homozygous and males were heterozygous for those 7 markers strongly suggesting an XX/XY sex determination system in this species. Three Markers were successfully validated in a wild population of P. trituberculatus and exhibited a specificity ranging from 93.3% to 100%. A high-resolution melting based assay was developed for sex genotyping. This study provides new knowledge and tools for sex identification which will help the development of protocols for monosex female production of P. trituberculatus and support future genomic studies

    Phonon promoted charge density wave in topological kagome metal ScV6_{6}Sn6_{6}

    Full text link
    Charge density wave (CDW) orders in vanadium-based kagome metals have recently received tremendous attention due to their unique properties and intricate interplay with exotic correlated phenomena, topological and symmetry-breaking states. However, the origin of the CDW order remains a topic of debate. The discovery of ScV6_{6}Sn6_{6}, a vanadium-based bilayer kagome metal exhibiting an in-plane 3\sqrt{3} x 3\sqrt{3} R\textit{R}30deg{\deg} CDW order with time-reversal symmetry breaking, provides a novel platform to explore the underlying mechanism behind the unconventional CDW. Here, we combine high-resolution angle-resolved photoemission spectroscopy, Raman scattering measurements and density functional theory to investigate the electronic structures and phonon modes of ScV6_{6}Sn6_{6} and their evolution with temperature. We identify topologically nontrivial Dirac surface states and multiple van Hove singularities (VHSs) in the vicinity of the Fermi level, with one VHS near the K point exhibiting nesting wave vectors in proximity to the 3\sqrt{3} x 3\sqrt{3} R\textit{R}30deg{\deg} CDW wave vector. Additionally, Raman measurements indicate a strong intrinsic electron-phonon coupling in ScV6_{6}Sn6_{6}, as evidenced by the presence of a two-phonon mode and a large frequency amplitude mode. Our findings highlight the fundamental role of lattice degrees of freedom in promoting the CDW in ScV6_{6}Sn6_{6} and provide important insights into the fascinating correlation phenomena observed in kagome metals

    Exoplanets in the Antarctic Sky I. The first data release of AST3-II (CHESPA) and new found variables within the southern CVZ of TESS

    Get PDF
    Located at Dome A, the highest point of the Antarctic plateau, the Chinese Kunlun station is considered to be one of the best ground-based photometric sites because of its extremely cold, dry, and stable atmosphere. A target can be monitored from there for over 40 days without diurnal interruption during a polar winter. This makes Kunlun station a perfect site to search for short-period transiting exoplanets. Since 2008, an observatory has existed at Kunlun station, and three telescopes are working there. Using these telescopes, the AST3 project has been carried out over the last 6 yr with a search for transiting exoplanets as one of its key programs (CHESPA). In the austral winters of 2016 and 2017, a set of target fields in the southern continuous viewing zone (CVZ) of TESS were monitored by the AST3-II telescope. In this paper, we introduce the CHESPA and present the first data release containing photometry of 26,578 bright stars (m(i) <= 15). The best photometric precision at the optimum magnitude for the survey is around 2 mmag. To demonstrate the data quality, we also present a catalog of 221 variables with a brightness variation greater than 5 mmag from the 2016 data. Among these variables, 179 are newly identified periodic variables not listed in the AAVSO database (https://www.aavso.org/), and 67 are listed in the Candidate Target List. These variables will require careful attention to avoid false-positive signals when searching for transiting exoplanets. Dozens of new transiting exoplanet candidates will be released in a subsequent paper
    corecore