1,003 research outputs found
Diffuse export of nutrients under different land uses in the irrigation area of lower Beiyunhe River (China)
AbstractNon-point source pollution is serious in the agriculture watershed of China. Understanding the characteristics of rainfall-runoff from agriculture watershed can provide theoretical support for controlling non-point source pollution. In this study, we investigated runoff characteristics of eight indices (dissolved total N, NO3--N, NH4+-N, total phosphorus, dissolved total phosphorus, particulate phosphorus, total organic carbon, COD) from three types of land uses, including farmland, forest and village in the downstream irrigation area of the Beiyunhe River basin. The results showed that the event mean concentrations (EMCs) of total dissolved N in village, farmland and forestland were 17.81mg/L, 12.68mg/L and 3.14mg/L, respectively. EMC of total phosphorus in the order: farmland (0.44mg/L) > village (0.22mg/L) > forestland (0.17mg/L). EMC of COD in the order: farmland (45.07mg/L) > forestland (27.06mg/L) > village (18.03mg/L). The changes in the nutrients concentrations of the runoff water over a rainfall event indicated that the transports of the nutrients are similar among various land use types. The instantaneous concentrations of TN, NH4+-N, and NO3--N were high in the initial period of runoff, tend to decreasing with rainfall continuing, and increase in later period. Phosphorus concentration with time variation was not obvious among three land use types. The phosphorus species with high proportion in the total phosphorus was particle P (accounting for 75%) in forestland, dissolve P (79%) in farmland, and particle P (48%) and dissolve P (52%) in village. The curves of COD and TOC had been shown as high in the initial period of runoff, tending to increasing with rainfall continuing, and decrease in the later period. First-flush of all the indices were obvious in all three land use types with the rank of village > forestland > farmland. In village, all of the pollutions have taken place the phenomenon of first flush, while in farmland, pollutions tended to uniformly distribute or dilution throughout the storm event
Mixed rectilinear sources localization under unknown mutual coupling
In this paper, a novel rectilinearity-based localization method for mixed near-field (NF) and far-field (FF) sources is proposed under unknown mutual coupling. The multiple parameters including direction of arrival (DOA), range and mutual coupling coefficient (MCC) are decoupled, thus only three one-dimensional (1-D) spectral searches are required to estimate the parameters of mixed rectilinear signals successively. Furthermore, the closed-form deterministic Cramer–Rao bound (CRB) of the concerned problem is also derived. Simulation results are provided to demonstrate the effectiveness of the proposed method for the classification and localization of mixed rectilinear sources
Multiple Tiny Ectopic Sebaceous Glands Discovered Throughout Entire Esophageal Tract
A 45-year-old woman complaining of abdominal fullness was referred for endoscopic examination. She was a non-smoker and non-drinker. An endoscopic examination revealed the presence of more than 100 tiny, rounded, elevated, yellowish lesions < 0.5 mm in diameter scattered throughout the upper and lower esophagus. Based on the endoscopic examination results, her stomach manifested symptoms of mildly superficial gastritis. Histopathologic examination of the esophagus biopsy specimen revealed that some of the lobules of the cells displayed typical sebaceous differentiation covered by a squamous epithelium. No evidence of inflammatory reaction, hair follicles, or malignancy was found. The patient's blood and serum findings were unremarkable. Our final diagnosis was multiple tiny ectopic sebaceous glands in the esophagus. This is an interesting and rare case of esophageal sebaceous glands distributed throughout the entire esophagus. Because there were no esophageal symptoms or/and eating problems, the patient did not require endoscopic surgery or other treatment. Follow-up examinations were recommended at intervals between 6 months and 1 year. At the 2-year follow-up, an endoscopic examination revealed no change in the size or the number of the tiny ectopic esophageal sebaceous glands
Effective Dynamic Range in Measurements with Flash Analog-to-Digital Convertor
Flash Analog to Digital Convertor (FADC) is frequently used in nuclear and
particle physics experiments, often as the major component in big multi-channel
systems. The large data volume makes the optimization of operating parameters
necessary. This article reports a study of a method to extend the dynamic range
of an 8-bit FADC from the nominal value. By comparing the integrated
pulse area with that of a reference profile, good energy reconstruction and
event identification can be achieved on saturated events from CsI(Tl) crystal
scintillators. The effective dynamic range can be extended by at least 4 more
bits. The algorithm is generic and is expected to be applicable to other
detector systems with FADC readout.Comment: 19 pages, 1 table, 10 figure
Transient high-frequency impedance comparison-based protection for flexible DC distribution systems
Flexible direct current (DC) distribution systems have emerged as the development trend for future distribution grids. However, these systems are vulnerable to DC faults, rapid fault identification and faulted line selection method are required to enhance the security of the entire system. A novel transient high frequency impedance comparison based DC protection for flexible DC distribution systems is proposed in this paper. The control independent high frequency impedance model of power converter is also investigated. Based on this model, the proposed method identified the faulted lines by comparing high frequency impedance measurement differences. For DC bus with multiple branches, this technique minimizes the threshold calculation job, which is usually difficult to process for the transient value based protections. Strict synchronization of data is also not required for this method. The simulation model of four-terminal flexible DC distribution networks is built in PSCAD/EMTDC to verify the effectiveness of the proposed protection model. Simulation results prove that the protection is robust to fault transition resistances and the measurement noise
Measurement of the Intrinsic Radiopurity of Cs-137/U-235/U-238/Th-232 in CsI(Tl) Crystal Scintillators
The inorganic crystal scintillator CsI(Tl) has been used for low energy
neutrino and Dark Matter experiments, where the intrinsic radiopurity is an
issue of major importance. Low-background data were taken with a CsI(Tl)
crystal array at the Kuo-Sheng Reactor Neutrino Laboratory. The pulse shape
discrimination capabilities of the crystal, as well as the temporal and spatial
correlations of the events, provide powerful means of measuring the intrinsic
radiopurity of Cs-137 as well as the U-235, U-238 and Th-232 series. The event
selection algorithms are described, with which the decay half-lives of Po-218,
Po-214, Rn-220, Po-216 and Po-212 were derived. The measurements of the
contamination levels, their concentration gradients with the crystal growth
axis, and the uniformity among different crystal samples, are reported. The
radiopurity in the U-238 and Th-232 series are comparable to those of the best
reported in other crystal scintillators. Significant improvements in
measurement sensitivities were achieved, similar to those from dedicated
massive liquid scintillator detector. This analysis also provides in situ
measurements of the detector performance parameters, such as spatial
resolution, quenching factors, and data acquisition dead time.Comment: 28 pages, 12 figure
Nonadiabatic approach to dimerization gap and optical absorption coefficient of the Su-Schrieffer-Heeger model
An analytical nonadiabatic approach has been developed to study the
dimerization gap and the optical absorption coefficient of the
Su-Schrieffer-Heeger model where the electrons interact with dispersive quantum
phonons. By investigating quantitatively the effects of quantum phonon
fluctuations on the gap order and the optical responses in this system, we show
that the dimerization gap is much more reduced by the quantum lattice
fluctuations than the optical absorption coefficient is. The calculated optical
absorption coefficient and the density of states do not have the
inverse-square-root singularity, but have a peak above the gap edge and there
exist a significant tail below the peak. The peak of optical absorption
spectrum is not directly corresponding to the dimerized gap. Our results of the
optical absorption coefficient agree well with those of the experiments in both
the shape and the peak position of the optical absorption spectrum.Comment: 14 pages, 7 figures. to be published in PR
Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments
Crystal scintillators provide potential merits for the pursuit of low-energy
low-background experiments. A CsI(Tl) scintillating crystal detector is being
constructed to study low-energy neutrino physics at a nuclear reactor, while
projects are underway to adopt this technique for dark matter searches. The
choice of the geometrical parameters of the crystal modules, as well as the
optimization of the read-out scheme, are the results of an R&D program.
Crystals with 40 cm in length were developed. The detector requirements and the
achieved performance of the prototypes are presented. Future prospects for this
technique are discussed.Comment: 32 pages, 14 figure
Pulse Shape Discrimination Techniques in Scintillating CsI(Tl) Crystals
There are recent interests with CsI(Tl) scintillating crystals for Dark
Matter experiments. The key merit is the capability to differentiate nuclear
recoil (nr) signatures from the background -events due to
ambient radioactivity on the basis of their different pulse shapes. One of the
major experimental challenges is to perform such pulse shape analysis in the
statistics-limited domain where the light output is close to the detection
threshold. Using data derived from measurements with low energy 's and
nuclear recoils due to neutron elastic scatterings, it was verified that the
pulse shapes between -events are different. Several methods of
pulse shape discrimination are studied, and their relative merits are compared.
Full digitization of the pulse shapes is crucial to achieve good
discrimination. Advanced software techniques with mean time, neural network and
likelihood ratios give rise to satisfactory performance, and are superior to
the conventional Double Charge method commonly applied at higher energies.
Pulse shape discrimination becomes effective starting at a light yield of about
20 photo-electrons. This corresponds to a detection threshold of about 5 keV
electron-equivalence energy, or 4050 keV recoil kinetic energy, in realistic
experiments.Comment: 20 pages, 7 figure
Search for Small Trans-Neptunian Objects by the TAOS Project
The Taiwan-America Occultation Survey (TAOS) aims to determine the number of
small icy bodies in the outer reach of the Solar System by means of stellar
occultation. An array of 4 robotic small (D=0.5 m), wide-field (f/1.9)
telescopes have been installed at Lulin Observatory in Taiwan to simultaneously
monitor some thousand of stars for such rare occultation events. Because a
typical occultation event by a TNO a few km across will last for only a
fraction of a second, fast photometry is necessary. A special CCD readout
scheme has been devised to allow for stellar photometry taken a few times per
second. Effective analysis pipelines have been developed to process stellar
light curves and to correlate any possible flux changes among all telescopes. A
few billion photometric measurements have been collected since the routine
survey began in early 2005. Our preliminary result of a very low detection rate
suggests a deficit of small TNOs down to a few km size, consistent with the
extrapolation of some recent studies of larger (30--100 km) TNOs.Comment: 4 pages, 3 figures, IAU Symposium 23
- …