22 research outputs found
Evaluating Wind-driven Natural Ventilation Potential for Early Building Design
Natural ventilation is widely applied in buildings considering its potential of improving indoor air quality and saving building energy costs. However, to evaluate its viability and determine the ventilation rates quickly and relatively accurately during early design stage is challenging. This paper explores a fast and accurate evaluation approach in the form of empirical equations to estimate the ventilation rate and potential of wind-driven natural ventilation. By using computational fluid dynamics (CFD) with results validated for both cross and single natural ventilation strategies, this study conducted a series of simulations to determine critical ventilation coefficients for the empirical equations as functions of wind direction, speed and building height. The proposed evaluation approach could help architects and engineers to evaluate the viability of natural ventilation during early building design. This approach was also demonstrated to evaluate the potential of natural ventilation in 65 cities of North America so a series of natural ventilation potential maps were generated for a better understanding of natural ventilation potential in different climates and for the climate-conscious design of buildings in North America
Parametric study of air curtain door aerodynamics performance based on experiments and numerical simulations
Air curtains have been widely used to reduce infiltration through door openings and save heating/cooling energy in different types of buildings. Previous studies have found that there exist three aerodynamics conditions: optimum condition (OC), inflow break-through (IB), and outflow break-through (OB) conditions, which are important for categorizing air curtain performance subject to such key parameters including supply speed and angle, and presence of a person during an actual operation. However, few studies have focused on the effects of these parameters on air curtain performance in terms of resisting infiltration and reducing exfiltration. This research presents a parametric study of air curtain performance based on reduced-scale experiments and full-scale numerical simulations. It was found that increasing air curtain supply angle improves air curtain performance when it is operated under the OC and IB conditions but creates excessive exfiltration under the OB condition. Increasing supply speed of air curtain generally improves the air curtain performance whereas this improvement deteriorates with the increase of supply angle under the OB condition. The presence of person, either directly under or below the air curtain, almost has no effect on the infiltration/exfiltration during the OC condition. Moreover, the person in the doorway can block airflow from both directions, contributing to less infiltration under the IB condition and less exfiltration under the OB condition than without the person. This study provides valuable insights into air curtain aerodynamics performance under different operational conditions and key contributing parameters
A Review on the Impact of Building Design and Operation on Buildings Cooling Loads
Energy consumption in buildings is considerably high in areas of hot and humid climates due to its association with high cooling loads. Electricity grids are highly affected by the consumption of cooling systems like air-conditioning and large refrigeration facilities, which significantly impact the economic and environmental sectors. As building design and operating parameters influence the cooling demand in the building, it is believed the root cause of the problem may be detected at an early building design stage. Thus, this review identifies the building design parameters that impact the cooling loads in buildings that are geographically restricted to countries with hot and humid climates. The building’s design characteristics are classified into four main categories: glass characteristics, wall characteristics, building orientation and dimensions (BO & D), and building cooling system. The review was conducted over high-rise and low-rise buildings. Annual energy requirements (in some cases overlapping with electricity consumption), annual cooling loads, and peak cooling loads are the three forms in which energy demand reductions in buildings are represented. It is found that maximum annual cooling load savings are obtained through cooling systems, followed by wall characteristics, then glass characteristics, with the least for BO & D, with maximum reductions of up to 61%, 59%, 55%, and 21%, respectively. As for the peak cooling load reductions, wall characteristics, cooling systems, and glass characteristics had almost the same average values of 18.7%, 15.2%, and 17.2%, respectively, while BO & D are not reported due to the incomparable number of case studies. The parameters that have the most influence on reductions in peak cooling loads are wall and glass characteristics. In general, savings that are associated with wall characteristics are more significant for low-rise buildings than for high-rise buildings, while the latter is more influenced by glass characteristics. This is a reasonable conclusion since high-rise buildings, in general, acquire higher window-to-wall ratios than the former. In general, most studies considered glass characteristics, while fewer studies considered BO & D. This review has shown various aspects that are vital in studying building cooling load demand and its related energy performance.This paper was made possible by an National Priorities Research Programs (NPRP) award (#NPRP11S-1208-170073) from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors
Effects of pool size and spacing on burning rate and flame height of two square heptane pool fires
The interaction of multiple pool fires might lead to higher burning rate and flame height than single pool fire, raising the possibility of fire ignition and flame spread and increasing the risks to people, buildings and environment. To quantify the burning rate and flame height of multiple pool fires from the view of physical mechanism, this paper presents an experimental study on two identical square pool fires. Heptane was used as fuel. The pool size and spacing were varied. Results showed that both the burning rate and flame height change non-monotonically with spacing. From the view of air entrainment, a correlation for the flame height of two pool fires is developed involving pool size, spacing and the flame height of zero spacing. The comparison with experimental results shows that the developed correlation is suitable for two heptane or propane fires. A theoretical study based on energy balance at one of the pool surfaces is performed to evaluate the burning rate of two fires, which is finally expressed as a function of pool size, spacing, burning rate and the flame height of single fire. The proposed model is validated using the experimental and literature data, which presents a reasonable reliability
Resilient cooling strategies – A critical review and qualitative assessment
The global effects of climate change will increase the frequency and intensity of extreme events such as heatwaves and power outages, which have consequences for buildings and their cooling systems. Buildings and their cooling systems should be designed and operated to be resilient under such events to protect occupants from potentially dangerous indoor thermal conditions. This study performed a critical review on the state-of-the-art of cooling strategies, with special attention to their performance under heatwaves and power outages. We proposed a definition of resilient cooling and described four criteria for resilience—absorptive capacity, adaptive capacity, restorative capacity, and recovery speed —and used them to qualitatively evaluate the resilience of each strategy. The literature review and qualitative analyses show that to attain resilient cooling, the four resilience criteria should be considered in the design phase of a building or during the planning of retrofits. The building and relevant cooling system characteristics should be considered simultaneously to withstand extreme events. A combination of strategies with different resilience capacities, such as a passive envelope strategy coupled with a low-energy space-cooling solution, may be needed to obtain resilient cooling. Finally, a further direction for a quantitative assessment approach has been pointed out
Evaluation of some assumptions used in multizone airflow network models
Abstract Multizone airflow network models assume that in a zone air temperature and contaminant concentrations are uniform, and air momentum effects are neglected. These assumptions could cause errors for airflow with strong buoyancy, large contaminant concentration gradient, or strong momentum. This study has found the correlations of the errors and some dimensionless air parameters. The assumption of uniform air temperature is acceptable when the dimensionless temperature gradient is smaller than 0.03. The assumption of uniform contaminant concentration is valid if the corresponding Archimedes number for the source zone is greater than 400. The assumption of neglecting air momentum effect is reasonable when the jet momentum effect is dissipated before reaching an opening in downstream
Urban microclimate and its impact on built environment – A review
Increasing urbanization and population growth have brought attention to urban microclimates in recent years. The study on urban microclimate and its impact on the built environment is gaining momentum. A growing number of researchers have examined the relationship between human activity and the immediate surroundings to reduce adverse impacts on the environment and climate. This paper presents the latest progress in urban microclimate research on urban wind and thermal environment, covering traditional methods, including field measurements, wind tunnel modeling, and CFD simulations, as well as emerging methods, such as artificial intelligence or data-driven models. Among the publications reviewed, the topics include isothermal scenarios that neglected thermal aspects (e.g., urban wind energy, wind comfort) and thermal scenarios (e.g., urban heat islands and outdoor thermal comfort). In the review, it was found that CFD has been widely applied due to its well-developed nature. In addition to field measurements, new techniques (such as satellite and thermal imaging) provide valuable validation data for CFD and training data for artificial intelligence applications. In isothermal scenarios, wind tunnel modeling has been successfully applied. However, thermal scenarios present significant challenges. In addition, urban data-driven models have emerged with promising results, but systematic investigations have been limited. In this paper, we identify future research needs for urban microclimates based on an overview of recent progress