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Highlights 

 Experimental study on burning of two heptane pools in free space was conducted. 

 Square pool side length and spacing were changed. 

 Both the fuel burning rate and flame height changed non-monotonically with spacing. 

 A correlation for predicting the flame height of two pool fires was developed. 

 The burning rate was qualified based on the energy balance of fuel surface. 

 

Abstract: 

The interaction of multiple pool fires might lead to higher burning rate and flame height than 

single pool fire, raising the possibility of fire ignition and flame spread and increasing the risks to 

people, buildings and environment. To quantify the burning rate and flame height of multiple pool 

fires from the view of physical mechanism, this paper presents an experimental study on two 

identical square pool fires. Heptane was used as fuel. The pool size and spacing were varied. Results 

showed that both the burning rate and flame height change non-monotonically with spacing. From 

the view of air entrainment, a correlation for the flame height of two pool fires is developed 

involving pool size, spacing and the flame height of zero spacing. The comparison with 

experimental results shows that the developed correlation is suitable for two heptane or propane 

fires. A theoretical study based on energy balance at one of the pool surfaces is performed to evaluate 
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the burning rate of two fires, which is finally expressed as a function of pool size, spacing, burning 

rate and the flame height of single fire. The proposed model is validated using the experimental and 

literature data, which presents a reasonable reliability. 

Keywords: Multiple pool fires; Flame height; Burning rate; Air entrainment; Heat feedback 
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Nomenclature 

a parameter in Eq. (17) 

Af flame surface area (m2) 

D pool diameter/length (m) 

F geometrical view factor 

g gravitational acceleration (m/s2) 

h convective heat transfer coefficient (kW/(m2K)) 

ΔHc heat of combustion (MJ/kg) 

ΔHg heat of gasification (kJ/kg) 

If flame intermittency 

Lf mean flame height above the pool surface (m) 

Lf,S=0 flame height with zero spacing (m) 

Lf,S>0 flame height with non-zero spacing (m) 

m  burning rate of each pool (g/s) 

''
m  burning rate per unit area of each pool (g/(m2s)) 

Q  heat release rate of each pool (kW) 

''

c
q  convective heat flux received by the pool (kW/m2) 

''

r
q  radiative heat flux received by the pool (kW/m2) 

''

,r A A
q


 radiation received by pool A from its own flame (kW/m2) 

''

,r B A
q


 flame radiation emitted by pool B and then received by pool A (kW/m2) 

S pool edge spacing (m) 

T∞ ambient temperature (K) 

Tf flame temperature (K) 

ΔTadd temperature rise in the additional region (K) 

Uf airflow velocity (m/s) 

W flame width (m) 

Greek symbols 

ε flame emissivity 
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λ parameter in Eq. (1) 

σ Stephan-Boltzmann constant (W/(m2K4)) 

χrad flame radiative fraction 

Subscript 

A pool A 

B pool B 

MF multiple fires 

SF single fire 

 

1. Introduction 

Pool fires are the most frequent of process industry accidents [1,2]. The fuel mass burning rate 

and flame height are two of the most important topics of pool fires and both of them have been 

studied for decades [3-5]. Compared to elaborate and extensive studies on single pool fires, much 

less attention has been paid to multiple pool fires, which is usually termed as the interactively 

burning of two or more adjacent pool fires [1]. A domino effect could be formed once a fire is 

propagated from one pool to another [6]. When the fires are located sufficiently close, the restriction 

of air entrainment will lead to a pressure drop between fires, resulting in flames tilt to each other 

and even merge together [7]. The interaction of multiple flames might cause increases of burning 

rate and flame height when compared to a single flame [8]. The enhanced heat feedback to the fuel 

and flame outward radiation due to interaction raise the possibility of fire ignition and flame spread. 

To better understand the flame interaction intensity and flame radiation property, the information of 

burning rate and flame height of multiple pool fires is necessary. 

The burning rate of pool fires is dependent on the heat transfers from the pool rim and flame 

to the fuel, including conduction, convection and radiation [9]. Four regimes of dominant heat 

transfer mechanism were reported by Hottel [10]: the conduction dominated regime for small pool 

diameters D<7 cm, the transition regime from conduction to convection (7 cm≤D<10 cm), the 

convection dominated regime for 10 cm≤D<20 cm and the radiation dominated regime for D≥20 

cm. For the single pool fire, the burning rate decreases with increasing D in the convection 

dominated regime, while it increases with D in the beginning and then maintains unchanged in the 
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radiation dominated regime [11]. Based on this law, different correlations for the burning rate of 

single pool fires were proposed under different fuels and scales [11,12]. However, the spacing is 

provided as an additional important factor influencing the burning behavior of multiples pool fires 

[9,13-15]. In the study of Huffman et al. [9], the multiple pool fires were arranged in a circular array, 

i.e., one pool located in the center and the other pools placed around the center pool. Liu et al. [13-

15] performed a series of experiments to study the burning rate of multiple pool fires in an N × N 

(N=3-15) square array. It was found that the burning rate of multiple pool fires with luminous flames 

increases first and then decreases with decreasing the spacing [9,13]. Similar trend of burning rate 

against spacing was found by Ji et al. [16] for the investigation of two parallel pool fires located in 

a tunnel and also by Fan and Tang [17] for the study of two parallel pool fires under different wind 

velocities. Liu et al. [13] attributed the non-monotonic trend as a result of the competition between 

the heat feedback enhancement and the air entrainment restriction. When multiple pool fires are 

close to each other, the fuel surface of each pool receives the heat feedbacks not only from its own 

flame but also from the neighborhood flames, the enhanced flame heat feedback will promote the 

fuel evaporation and thus increases the burning rate [13]. Oppositely, the restriction of air 

entrainment reduces the combustion efficiency and thus weakens the heat feedback to fuel surface, 

resulting in a decrease of burning rate [13]. Despite the deep understanding of burning mechanisms, 

a viable correlation for predicting the burning rate of multiple pool fires from the view of physical 

mechanism is limited in literatures. This work aims to bridge the knowledge gap. 

Along with the burning rate, the flame height of multiple pool fires will be inevitably affected 

by the interaction of flames. Former studies [17-22] have been measured the flame height of two 

fires in a parallel array in free space. Fan and Tang [17] experimentally obtained the flame height 

of two square heptane pool fires. Li and Liu [18] experimentally measured the flame height of two 

circular heptane pool fires. Vasanth et al. [19] measured the flame height of two circular heptane 

pool fires using the method of numerical simulation. Other than the liquid fuel, Sugawa and 

Takahashi [20], Wan et al. [21] and Tao et al. [22] measured the flame heights of two rectangular 

propane gas fires. Other than free space, the flame height or length from two fires in confined spaces 

was studied by Wan et al. [23,24]. Empirical correlations for the flame height were proposed by 

Refs. [17,20], while their correlations are usually isolated from the other experimental data. In our 

former work [21], a correlation for the flame height of two identical propane gas fires was developed 
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and validated using both experimental and literature data. However, there is no unified correlation 

for flame heights of different fuel types, which motivates the present study. 

Due to the complicated effect of air entrainment and heat feedback on multiple pool fires, one 

approach to establish desirable models of flame height and burning rate was to first use gas fires of 

which the heat feedback was not an important factor controlling the burning and then consider the 

influence of heat feedback separately [25]. Based on this research idea, the quantitative effect of air 

entrainment on flame height of two propane gas fires have been investigated in our previous work 

[21]. As a successive and systematic work, the effect of heat feedback on burning rate of multiple 

pool fires will be studied in depth through this work. 

Therefore, this paper aims to study the burning rate and flame height of two identical heptane 

pool fires. The square pool size and edge spacing were changed. Correlations for flame height and 

burning rate of two identical fires were proposed from the view of physical mechanism. The 

comparison of calculated and experimental data in this work and literatures validated the accuracy 

of the proposed correlations. The current study can improve the understanding of interaction 

mechanisms of multiple pool fires and provide viable analytical methods for researchers to study 

the flame height and burning rate of multiple pool fires. A further aim of this paper is to provide 

experimental data for the validation of numerical simulations. 

2. Experiments 

Figure 1 shows the experimental setup. Two identical square pool fires, denoted as pool A and 

B, were located parallel on a fireproof board (1.5 m×0.5 m) and placed on an electronic balance. 

The electronic balance was XA32001L series manufactured by Mettler Toledo® Ltd (maximum 

load 34 kg, precision 0.1 g, sampling interval 1 s). Based on Ref. [10], four pool side lengths (D) of 

8, 10, 13 and 16 cm were used to ensure the pool fire is outside the conduction dominated regime. 

The pools were 4 cm deep and heptane was used as the fuel with an initial depth of 1.5 cm. 

Preliminary tests with different initial fuel depths of 1.0 cm, 1.5 cm and 2.0 cm were conducted. 

Taking the case of D=16 cm and S=0 cm as an example, the total mass loss rate against time for the 

three initial fuel depths is presented in Fig. 2. To illustrate the steady burning time, taking a certain 

mass loss rate value of 3 g/s as the criterion, it is regarded that the steady burning begins at the time 

of mass loss rate arriving at 3 g/s and it ends at the time of mass loss rate decreasing to 3 g/s and 

ACCEPTED M
ANUSCRIP

T



7 
 

following a trend of decline. Note that even though the criterion of 3 g/s is a bit of subjective, the 

aforementioned trends also hold and the differences of average mass loss rates determined by 

various steady burning times are proved very small within errors of 2%. It can be observed from 

Fig. 2 that both the steady burning time and the burn out time of pools increase with increasing the 

fuel depth, while the average mass loss rates at the steady state under the three initial fuel depths 

are nearly identical. The above findings suggest that the fuel burning during the steady stage arrives 

at a balance between the fuel evaporation and the heat feedback received by fuel. And the balance 

is weakly affected by the initial fuel depth. Therefore, the initial fuel depth of 1.5 cm was selected 

to investigate the effect of heat feedback on burning rate at the steady state as it can provide 

sufficient steady burning time and the impact of conduction of pool rims on burning is insignificant. 

The pool edge spacing (S) was varied from zero to several times of D/2, as listed in Table 1. For 

comparison, the cases with pool A burning individually were also conducted. 

 

Fig. 1. Experimental setup. 
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Fig. 2. Total mass loss rate against time under different initial fuel depths (D=16 cm, S=0 cm). 
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As shown in Fig. 1, a column of 14 thermocouples with two intervals of 7.5 cm from 30 cm to 

150 cm high and 15 cm from 150 cm to 225 cm high was positioned at the center of the two pools. 

The thermocouples were K-type with the diameter of 1 mm. A digital Sony camera (HDR-CX900) 

with spatial resolution of 1920 × 1080 and frame rates of 50 fps was employed to record the flame 

shape from the front view. It should be noted that the heat fluxes around the flames were also 

measured during experiments. As the heat flux is not the scope of this work, it is not presented here. 

The ambient temperature and humidity during experiments were about 303 K and 65%, respectively. 

Each experiment was repeated two times. The calculated maximum standard deviations of mass 

burning rate and flame height were respective no more than 0.04 g/s and 5 cm, which shows good 

repeatability. It is assumed that the two pools have identical flame shapes and burning rates, and the 

average data at the steady state were used in the following. A detailed uncertainty analysis was 

carried out to estimate the uncertainty of measurements, as presented in Appendix A. It was found 

that the maximum uncertainties in the burning rate, flame height and temperature are approximately 

±4.2%, ±4.9% and ±3.3%, respectively. 

Table 1 Experimental details. 

Test condition Pool side length D (cm) Normalized spacing S/D 

Two fires 

8 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6 

10 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6 

13 0, 0.5, 1, 1.5, 2, 3, 4, 5 

16 0, 1, 2, 3, 4, 5 

One fire 8, 10, 13, 16 - 

3. Results and discussion 

3.1. Flame shape 

3.1.1. Flame merging behaviors 

Taking the pools of D=13 cm as an example, the typical flame images during steady state with 

increasing spacing are shown in Fig. 3. It is observed that the flame shape can be divided into three 

regions: fully merging region when 0≤S/D≤2, intermittent merging region when 2<S/D≤4 and fully 

separating region when S/D>4. The same trend can be found for the other three pool sizes of 8, 10 

and 16 cm. 
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Fig. 3. Snapshots of flame shape with increasing S under D=13 cm. 

3.1.2. Flame height 

The mean flame height above the pool surface (Lf) with an intermittency (If) of 0.5 as proposed 

by Zukoski et al. [26] was determined in this work by using the image processing method [21,27]. 

For the merging cases, the whole flame height of two flames is the merged flame height, for the 

non-merging cases, the averaged flame height of two flames is determined as the flame height. 

Figure 4 shows the measured flame heights under various S and D. It is observed that as the S/D 

decreases, Lf increases first until it reaches the peak value at about S/D=0.5-1 and then decreases 

slightly until S/D=0. 
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Fig. 4. Measured flame height (Lf) versus S/D. 

In our former study [21], a theoretical analysis was conducted to study the effect of air 

entrainment on flame height of two propane gas fires. The region between the two fires is denoted 

as the additional entrainment region. The mass transfer among the flame region, additional 

entrainment region and surrounding ambient region was evaluated using Bernoulli’s theory. By 

introducing a parameter λ characterizing the relationship between free air entrainment rates under 

zero spacing and spacing higher than zero, the flame height of two fires with non-zero spacing (Lf,S>0) 

can be expressed as [21] 

 

   

, 0

2

, 0

6 1

6 2 / 1 / 1 /

f S

f S
a d d

L D

L
D S T T S D










   

               (1) 

where Lf,S=0 is the flame height with zero spacing, ΔTadd is the temperature rise in the additional 
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region, T∞ is the ambient temperature. 

Logically, the same derivation process can be applied for two pool fires. Hence Eq. (1) is 

adopted to estimate the flame height in this work. To develop an general correlation of Lf,S>0, the 

determination of ΔTadd /T∞ and λ are required. For two gas burners in Ref. [21], 

 / , ,
a d d

T T f Q D S


                           (2a) 

 ,f Q D                                (2b) 

where Q  is the heat release rate of each burner (HRR). As the flame height of gas burners is mainly 

controlled by the air entrainment and largely dependent on the fuel supply rate, both ΔTadd /T∞ and 

λ are functions of Q , as shown in Eq. (2). Unlike the gas fires, the burning rate and resulting Q  

of pool fires are significantly affected by the pool size and spacing. Therefore, Eq. (2) can be 

simplified as 

 / ,
a d d

T T f D S


                             (3a) 

 ,f D S                                (3b) 

Compared to Eq. (2), the impact of Q  on ΔTadd /T∞ and λ is implicitly embedded in D and S. 

The expression of ΔTadd /T∞ can be determined experimentally. It is found that the measured 

temperature at the vertical centerline between two pools increases and then decreases with 

increasing height. The region with increasing temperatures is treated as the additional region (see 

Fig. 5), the ΔTadd is determined as the average temperature rises within this region. The radiation 

correction is performed for the measured temperatures using the method reported in Ref. [28]. 

Figure 5 shows the corrected ΔTadd /T∞ against S/D. It is seen that ΔTadd /T∞ decreases as the S/D 

increases while it is weakly affected by D. Fitting the data points gives 

 / 3 .9 5 ex p 0 .4 3 /
a d d

T T S D


                        (4) 

From Eq. (4), when S/D increases to 16, ΔTadd /T∞≈0.004 and ΔTadd <1 K. The very low 

temperature rise in the additional region suggests that the pool fires have completely separated with 

no interaction when S/D≥16. 
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Fig. 5. Correlation of ΔTadd /T∞ and S/D. 

Substituting ΔTadd /T∞, Lf,S>0 and Lf,S=0 into Eq. (1), the relationship between calculated λ and 

S/D is plotted in Fig. 6. It can be seen that λ decreases with increasing S/D. Up to infinite S, Eq. (1) 

can be simplified as 

 , , 0
/ 3 / 4 1

f S F f S
L L 


                         (5) 

where Lf,SF is the flame height of single fire. The values of λ for singe fires can be calculated using 

Eq. (5) of which the average value is -0.13. Substituting λ=-0.13 into Eq. (5) gives Lf,SF/Lf,S=0=0.65, 

suggesting that the flame height of single square fire is 0.65 times of the two fires with zero spacing. 

It is worth noting that the constant 0.65 is quite consistent with the 0.63 proposed by Sugawa and 

Takahashi [20]. Taking λ=-0.13 as the lower limit to fit the data points in Fig. 6 gives: 

 
0 .4 7

0 .1 3 0 .2 1 /S D


                          (6) 

0 1 2 3 4 5 6

-0.4
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0.4  D=8 cm    D=10 cm
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 Fitting line

 Fitting equation:

λ= -0.13+0.21(S/D)
-0.47

, R
2
=0.82

λ

S/D

S D

D

D

 

Fig. 6. Relationship between the calculated λ using Eq. (1) and S/D. 

Substituting Eqs. (4) and (6) into Eq. (1) and taking Lf,S=0 into account, the final expression of 

flame height is formulated as: 
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0 .4 7

,

, 0
2

1, 0

3 0 .8 7 0 .2 1

, 0

3 / 1 3 .9 5 e x p 0 .4 3 1

f S

f S

S

S
L

D
SL

S S S

D D D








  

    
    




      
                

        (7) 

Equation (7) indicates that the flame height (Lf,S) of two identical square pool fires can be 

determined using Lf,S=0 and S/D. It should be noted that for the cases of non-zero spacing, 

Lf,SF/Lf,S=0=0.65 determines Lf,S=0=1.54Lf,SF. The flame height of single fire can be calculated using 

the Heskestad’s model [29], 
2 / 5

,
0 .235 1 .02

f SF
L Q D  , which is also validated by the single fire 

cases in this work. As a result, the effect of heat release rate is implicitly embodied in Eq. (7). It 

should be recognized that the combustion efficiency will mainly affect the heat release rate. Weng 

et al. [8] experimentally measured the combustion efficiency of multiple wood crib fires in free 

space. They found that for the fire array 2 by 2, the ratio of combustion efficiencies between the 

merged flame (fire spacings of 0-5 cm) and the single fire is within 0.94-1.09. Based on the 

comparable combustion efficiencies between 4 fires and one fire, it is reasonable to suppose that the 

combustion efficiency of the present two square pool fires is close to the single fire. Therefore, the 

effect of combustion efficiency is believed to be small. In spite of this, an additional advantage of 

Eq. (7) is that it can avoid determining the combustion efficiency of two interacting pool fires. 

For validation, the calculated flame heights using Eq. (7) are compared to the previous studies 

[17-21]. Fan and Tang [17] experimentally obtained the flame heights of two square heptane pool 

fires with D=7 and 10 cm and S=0-40 cm. The flame height data from two heptane pool fires with 

diameters (D) of 10, 20 and 40 cm and S=0-6D were reported by Li and Liu [18]. Vasanth et al. [19] 

numerically studied the flame heights of two circular heptane pool fires with D=4.8, 6.8 and 8.3 cm 

and S=0.25D-1.08D. Other than the liquid fuel, Sugawa and Takahashi [20] measured the flame 

heights of two rectangular propane gas burners with burner sizes of 40(W)×2(D) cm2 and 80×2 cm2. 

The long edges of the burners were parallel and S was varied from 0 to 30 cm. Wan et al. [21] 

measured the flame heights of two square propane gas burners with D=15 cm and S=0-4D. Figure 

7 shows the comparison of calculated and measured flame heights both in this work and literatures. 

It is observed that the calculated flame heights agree well with the experimental results, suggesting 

that Eq. (7) is reliable in predicting the flame height of two identical heptane and propane fires in 
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Fig. 7. Comparison of calculated and experimental flame heights. 

3.2. Mass burning rate 

Figure 8 shows the time-averaged burning rate per unit area of each pool (
''

m ) against S/D at 

steady state. There is no surprising that 
''

m  changes non-monotonically with S, as observed by the 

former studies [9,13]. Next, we attempt to quantify the burning rate of two interacting fires from the 

view of heat feedback mechanism. 
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Fig. 8. Mass burning rate of each pool versus S/D. 

At the steady state, the energy balance at the fuel surface can be expressed as [30]: 

'' '' ''

g c r
m H q q                                (8) 

where ΔHg is the heat of gasification, ''

c
q  and ''

r
q  are the convective and radiative heat fluxes 

received by the pool, respectively. The conductive heat transfer is ignored in Eq. (8) based on the 

following reasons. For the present pool size, the equivalent pool diameters with the same surface 
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area are calculated within 9-25.5 cm, which falls in the regime where the heat feedback is dominated 

by convection and/or radiation based on the four regimes divided by Hottel [10]. Vali et al. [31] 

experimentally studied the energy transfer of a circular methanol pool fire with a diameter of 9 cm 

under three different fuel depths of 6 mm, 12 mm and 18 mm. They revealed that for the overall 

three fuel depths, the average portions of the conductive, convective and radiative heat transfers to 

the fuel surface are 22%, 75% and 3%, respectively. Their study indicates that the convective heat 

transfer is dominant for the pool diameter of 9 cm. Due to the low level of soot production and 

nonluminous flame of the methanol pool fire, the radiative heat feedback is insignificant. While for 

the present heptane pool fire with high soot production and luminous flame, the radiative heat 

feedback is deemed larger than that of the methanol pool fire with a same pool size. And the radiative 

heat feedback would increase with increasing the pool size. Therefore, the conductive heat feedback 

is ignored in this work because of the pool diameters of 9-25.5 cm. 

'' ''

c rq q
'' ''

, ,c MF A r A Aq q  ''

,r B Aq 

Single pool                            Pool A                        Pool B

(a)                               (b)

 

Fig. 9. Schematic diagram of the flame heat feedback received by the fuel surface of (a) single 

pool and (b) one of the two pools. 

Figure 9 shows the schematic diagram of the flame heat feedback to the fuel surface under 

different fire numbers. For a single fire (Fig. 9a), Eq. (8) can be specified as 

'' '' ''

, ,S F g c S F r S F
m H q q                             (9) 

For two interacting fires (Fig. 9b), the heat feedback to one of the pools (labelled as pool A for 

convenience in the following) is given by 

'' '' '' '' '' ''

, , , , , ,M F A g c M F A r M F A c M F A r A A r B A
m H q q q q q

    
                 (10) 

where the subscripts SF and MF denote the single and multiple fires, respectively, 
''

,r A A
q


 is the 

radiation received by pool A from its own flame, 
''

,r B A
q


 is the flame radiation emitted by pool B 
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and then received by pool A. 

The convective heat feedback can be expressed as  
''

c f
q = h T T


  [9], where h is the 

convective heat transfer coefficient and Tf is the flame temperature. For the single fire cases, Ditch 

et al. [32] measured the ''

S F
m  of circular pool fires with D=10-100 cm using various fuels including 

heptane. Modak and Croce [30] measured the ''

S F
m  of square PMMA pool fires with D=2.5-122 

cm. In these studies, the convection was recognized as the primary heat transfer mechanism for 

small pools and assumed as a constant for all pool sizes. The convective coefficient h is largely 

dependent on the flow conditions including the flame temperature (Tf) and flow velocity (Uf). For 

the present two fires, it found that the vertical temperature distributions for S→∞ (single square fire) 

and S=0 are nearly identical based on the measurement temperatures at the centerline, thus the flame 

temperatures are very close. Hence Tf is assumed unchanged with D and S for simplification. The 

values of λ calculated by Eq. (6) are ranged from -0.13 to 0.16, resulting in the ratio of flow velocities 

Uf,S=0/Uf,S>0 ranging from 0.87 to 1.17. The velocity ratio being close to 1 makes it possible to assume 

h is weakly affected by S. Therefore, the convective heat feedback received by each pool in this 

work is regarded as a constant regardless of S, i.e. 
'' ''

, ,c S F c M F A
q q


 . Combining Eqs. (9) and (10), 

the burning rate increment can be expressed as 

'' '' ''

, , ,'' '' ''

,

r A A r B A r S F

A M F A S F

g

q q q
m m m

H

 
 

   


                 (11) 

The flame radiation terms in Eq. (11) are given by: 

 
'' 4 4

,r S F S F f
q T T 


  ,  

'' 4 4

,r A A M F f
q T T 

 
  ,  

'' 4 4

,r B A M F f
q F T T 

 
    (12) 

where ε is the flame emissivity, σ is the Stephan-Boltzmann constant, F is the view factor between 

the surface of pool A and the flame area of pool B. Substituting Eq. (12) into Eq. (11) and ignoring 

the constant terms yield 

'' ''

,M F A S F M F M F S F
m m F                         (13) 

From Eq. (13), the flame emissivity ε and view factor F ought to be determined to develop a 

general correlation of burning rate. Basically, the total radiative energy from a flame can be 

expressed as 
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4

ra d c f f
m H A T                             (14) 

where χrad is the flame radiative fraction, ΔHc is the heat of combustion, Af is the flame surface area. 

For fuels producing sooty flames, the radiative energy is generally accounted for 0.2-0.4 times the 

total HRR [33]. Specifically, Gore et al. [11] reported that χrad were approximately 0.3 for heptane 

pool fires with diameters of 4.6-30 cm. Similar χrad was reported by Koseki and Yumoto [12] for 

heptane pool fires with diameters of 30 and 60 cm. Therefore, in this work the χrad is assumed as a 

constant. Further assuming the flame shape is a cuboid [28] with the square base of D×D and the 

height of Lf, Af =D2+4DLf ≈4DLf. Equation (14) is converted to 

''

f f

m D
m

A L
                               (15) 

Substituting Eq. (15) into Eq. (13) gives 

 
'' '' '' ''

, ,

, ,

1
M F A S F M F A S F

f M F f S F

D D
m m m F m

L L
                   (16) 

It is extremely challenging in estimating the view factor between two finite areas. Assumptions 

have to be made to simplify the problem. Since the pool surface area is small compared to the flame 

area, F is modeled as the view factor between a differential area and a finite area. For simplicity, the 

influence of flame tilt due to the fire interaction is ignored, then the view factor between a cuboid 

with the dimension of D×D×Lf,MF and a horizontal target is given by [28]: 

1 1

2 2 2 2

, ,

ta n ta n
2 2

f M F f M F

D a D
F

a a L a L


 

 

 

             (17) 

where a=S+D/2. As D is much smaller than Lf,MF, 
1

2 2 2 2

, ,

ta n

2 2
f M F f M F

D D

a L a L




 

, then 

Eq. (17) can be simplified as 

 

 

1

2 2

,

2
ta n

2 2 4
f M F

S D DD
F

S D S D L




 
  

   

                (18) 

Substituting Eq. (18) into Eq. (16) and based on the experimental data, the calculated results 

in Eq. (16) is plotted in Fig. 10. 
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Fig. 10. Correlation of burning rate increment. 

It can be seen that the scatter data points from various pool sizes are now converged. Fitting 

the data points linearly gives 

 
'' '' '' ''

, ,

, ,

1 2 .8 1
M F A S F M F A S F

f M F f S F

D D
m m m F m

L L

 
    

  

            (19) 

Equation (19) can be rearranged as: 

 

''

,,

''

,

1 1 2 .8 /

1 1 2 .8 1 /

f S FM F A

S F f M F

D Lm

m F D L




 
                     (20) 

Based on  ,
, ,

f M F
F f D S L  in Eq. (18),  , , 0

, ,
f M F f S

L f D S L


  in Eq. (7), and 

 , 0 ,f S f S F
L f L


  in Eq. (5), it is deduced from Eq. (20) that the 

''

,M F A
m  can be predicted using 

the D, S, ''

S F
m  and 

,f S F
L . To validate the proposed equation, the calculated burning rates are 

compared to the experimental data of two heptane pool fires from Fan and Tang [17] and Li and Liu 

[18], as shown in Fig. 11. It is observed that the calculated burning rates agree well with the 

experimental results, suggesting that Eq. (20) can be reliable in predicting the burning rate of two 

identical pool fires in open space. As the air entrainment and heat feedback mechanisms of multiple 

pool fires in a circular or square array will be different from the present two fires in a parallel array, 

the experimental data of Huffman et al. [9] and Liu et al. [13-15] are not presented here to compare 

with the proposed model. 
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Fig. 11. Comparison of calculated and experimental mass burning rates for two pool fires. 

It should be noted that the total mass of two fires was measured in the experiments, the effect 

of lip height (distance between the fuel surface and the top of the pool) on fire number is not 

considered in the original design of experiments. Babrauskas [34] stated that the steady burning of 

pool fire would reach if the fuel layer is large enough until the boilover occurred. Koseki et al. [35] 

indicated that a hot zone of at least 5-10 mm layer thickness is necessary for boilover. Using circular 

pools in diameters of 0.3-3.05 m and fuel thicknesses of 1-10 cm, Koseki et al. [35] further found 

that the variation of lip height has a little impact on the burning rate. In the latter study performed 

by Chatris et al. [36] on the burning rate of circular pools in diameters of 1.5-4 m and lip heights of 

20-40 cm (fuel thickness maintained at 1 cm), they also found that the burning rate is weakly 

affected by the lip height. Both of them attributed this weak effect to the thin fuel layers used in 

their experiments. Besides, only when the fuel level is allowed to run down in the pool significantly, 

the burning rate would change progressively with the lip height [34]. As the thin fuel thickness of 

1.5 cm is adopted in this work, the effect of lip light on the present burning rate of two fires is 

believed to be small regardless of the fire number. 

Conclusions 

A series of experiments was performed in open space to study the flame height and mass 

burning rate of two identical square pool fires. The pool size (D) and edge spacing (S) were changed. 

The main conclusions are: 

(1) The flame shape presents three regions with increasing S: fully merging region when 

0≤S/D≤2, intermittent merging region when 2<S/D≤4 and fully separating region when S/D>4. Both 

the flame height and the burning rate change non-monotonically with increasing S and the peak 
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values occur at S/D=0.5-1. 

(2) Taking the effect of air entrainment into account, a correlation for the flame height of two 

fires (Eq. (7)) is developed by taking into account the flame height of zero spacing (Lf,S=0) and S/D. 

And the effect of heat release rate is implicitly embodied in Lf,S=0. The comparison with experimental 

results shows that the proposed equation is suitable for predicting the flame height of two identical 

heptane and propane fires. An additional advantage of the proposed model for flame height is that 

it can avoid determining the combustion efficiency of two interacting pool fires. 

(3) Based on the energy balance at the pool surface, a theoretical correlation for predicting the 

burning rate is developed. The proposed correlation (Eq. (20)) indicates that the burning rate of one 

of the two fires can be predicted using the burning rate and flame height of the single fire and the 

pool size and spacing. The correlation is also validated using the experimental and literature data, 

which presents a reasonable reliability. 

The results presented here would help better understanding the physical mechanism of 

interacting fires and provide viable models to determine the flame height and burning rate of two 

identical pool fires. The flame outward radiation and the resulting possibility of fire ignition can be 

further studied, which can give a guidance of the fire safety distance between discrete combustibles. 

It should be recognized that the air entrainment and heat feedback mechanisms of two pool fires 

with different dimensions will be different from that of the two identical fires. As a result, the present 

models for burning rate and flame height might be unsuitable. It is significant to reveal the burning 

behaviors of two pool fires with different sizes, which will be studied in the near future. 
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Appendix A Uncertainty analysis  

The uncertainty analysis for the measurements of burning rate, flame height and temperature 

is adapted from the method of Wheeler and Ganji [37]. Given a result R, which is a function of n 

measured independent variables, x1, x2 … , xn, 

 1 2
= , ...,

n
R f x x x                             (A1) 

Based on the principle of propagation of uncertainty, the absolute uncertainty of R, δR can be 

estimated by a root sum square method [37]: 

1 / 2
2

1

=

n

i

i i

R
R x

x
 



   
  

   

                          (A2) 

where δxi is the absolute uncertainty of the measured variable xi. 

If R can be calculated in a pure product form of the measured values [37]: 

1 2 3
=

a b c N

n
R C x x x x                               (A3) 

The relative uncertainty of R, 
R

R


 can be expressed as [37]: 

1 / 2
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              (A4) 

Based on Eq. (A4), the uncertainty of measurements in this work can be estimated in the 

following. 

(1) Uncertainty of the burning rate measurement 

The uncertainty of the burning rate measurement is referred to the study of Shafee and 

Yozgatligil [38]. The mass burning rate per unit area of pool can be calculated as: 

'' m
m

t A




 
                              (A5) 

where Δm is the mass loss, Δt is the time interval, A is the pool surface area. 

Similar to Eq. (A2), the uncertainty of the burning rate measurement can be determined as 

1 / 2
2 2 2

'' '' ''

'' m m m
m m t A

m t A
   

        
           

         

           (A6) 
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where 
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1m

m t A




  
, 

 

''

2
=

m m

t t A

  

  

, 

''

2

m m

A t A

  


  
. 

Based on Eq. (A6), the relative uncertainty of measured burning rate, 

''

''

m

m


 can be obtained 

1 / 2
2 2 2

'' '' '' ''

'' '' '' ''

m m m m t m t A m A

m m m m m t t m A A

               
         

           

     (A7) 

where 
m

m




, 

t

t




 and 

A

A


 are relative uncertainties of the measured mass loss, time interval 

in the steady stage and pool surface area, respectively. 

The uncertainty of fuel mass measurement depends on the balance readability, linearity, and 

repeatability [38], all of them were ±0.1 g as provided in the technical guide of the electronic balance. 

The uncertainties of time interval and pool surface area were determined based on the load cell 

resolution of ±0.2 s and ruler resolution of ±1 mm, respectively. Taking these values into Eq. (A7) 

and considering all experimental cases, it was calculated that the maximum relatively uncertainty 

of the burning rate is approximately ±4.2%. 

(2) Uncertainty of the flame height measurement 

In this work, the flame height was determined through image processing method developed by 

Yan et al. [39]. The flames were recorded by a digital camera. All images were composed of 1920 

× 1080 pixels and were captured at a rate of 50 frames per second. By averaging total 3000 frames 

(60 s) during the steady stage, the mean flame height was then obtained. In the experiments, a target 

along the flame center and at a fixed height from the pool surface was used as the reference to 

determine the relationship between the recorded height in the unit of pixels and the actual height in 

the unit of meters. Then the flame height, Lf can be determined as 

f

P L
L

P

 



                              (A8) 

where P is the flame height in pixels, ΔL is the target height in meters, ΔP is the target height in 

pixels. These parameters were measured using an electronic digital caliper with a resolution of ±1 

mm. 

Similarly, the uncertainty of measured flame height can be determined as 
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f f f
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           
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           (A9) 

where 
f

L L

P P

 


 
, =

f
L P

L P



 
, 

 
2

f
L P L

P P

   

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. 

Based on Eq. (A9), the relative uncertainty of measured flame height, 
f

f

L

L


 can be obtained 
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f f f f

f f f f

L L L LP P L L P P

L L P P L L L L P P
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           
         
          
      

    (A10) 

where 
P

P


, 

L

L




 and 

P

P




 are relative uncertainties of the measured flame height in pixels, 

target height in meters and in pixels, respectively. Based on the resolution of electronic digital 

caliper, δP = ±2 pixels, δΔL = ±1 mm, δΔP = ±2 pixels, respectively. Taking all experimental cases 

into account, it was calculated that the maximum relative uncertainty of flame height measurement 

is about ±4.9%. 

(3) Uncertainty of the temperature measurement 

Prior to the present study, Rasiah [40] performed a calibration of T-type thermocouples and 

conducted uncertainty analysis using the method of Wheeler and Ganji [37]. He estimated an 

uncertainty in temperature rise of δΔT = ±0.06 ℃. Based on the study of Rasiah, a conservative 

value of δΔT = ±0.1 ℃ was used by Wright et al. [41] to estimate the uncertainty of temperature. In 

addition, Ma [42] measured the temperature using E-type thermocouples and estimated the 

uncertainty of temperature as ±1 ℃. In this work, the temperature was measured by K-type 

thermocouples and the uncertainty of the temperature reading was ±0.1 ℃. A conservative value of 

±1 ℃ was considered in this work, then the relative uncertainty of temperature can be calculated as 

 

1
=

T

T T

  
  
 
 

℃

℃
. As the ambient temperature was about 30 ℃, the maximum relative uncertainty 

of temperature measurement was approximately ±3.3%. 
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