138 research outputs found

    Bioimaging and Bio-Sensing Techniques for Lung Cancer Detection

    Get PDF
    Early cancer detection and suitable treatment improve the 5-year survival rates of lung cancer significantly. Many cancer diagnostic approaches have been investigated, including mammography, magnetic resonance imaging, ultrasound, computerized tomography, positron emission tomography and biopsy. However, these techniques have some drawbacks such as expensive and time-consuming. Electromagnetic tomography (EMT) has been proposed as a promising diagnostic tool for lung cancer detection. In addition, developing label-free and cost-effective biosensors for target tumor markers detection have attracted attentions worldwide. This chapter reviews the recently developed EMT and bio-sensing techniques for early-stage lung cancer detection

    Passively mode-locked ytterbium-doped fiber laser with cylindrical vector beam generation based on mode selective coupler

    Get PDF
    We propose and demonstrate, for the first time to the best of our knowledge, a passively mode-locked ytterbium-doped fiber laser generating cylindrical vector beams (CVBs) using a mode selective coupler (MSC) as the transverse mode converter and splitter, and a semiconductor saturable absorber mirror (SESAM) for mode-locking. According to the coupling mode theory and the phase matching principle, the MSC was fabricated by weakly fused technology, having a low loss of about 0.5 dB and achieving LP11 mode with a high purity of > 96%. The CVB fiber laser operates at a center wavelength of 1042.3 nm, with a 3 dB spectral width of 1.5 nm. The repetition rate of the mode-locked laser pulses is 18.58 MHz. The radially and azimuthally polarized vector beams can be switched by adjusting the polarization controllers in the fiber ring cavity, with a high mode purity measured to be > 95%. The mode-locked CVB ytterbium-doped fiber laser has potential applications in optical tweezers, optical imaging, and so on

    Three more leaves of the Sanskrit – Uighur bilingual Dharmaśarīrasūtra in Brāhmī script

    Get PDF
    Three leaves written in Brāhmī script and kept in the Dunhuang Research Academy turn out to be parts of a bilingual text of Dharmaśarīrasūtra in Sanskrit and Uighur. After analysing several versions of Dharmaśarīrasūtra, it can be inferred that these three fragments belong to the Northern Brāhmī recensions which were circulated along the Northern Silk Road and are different from the Southern Brāhmī recensions popular along the Southern Route, such as the Khotanese version. This paper attempts to transcribe these fragments and make a thorough research on Dharmaśarīrasūtra, taking five relevant Chinese versions into account

    Modulation of Human Herpesvirus 8/Kaposi’s Sarcoma-Associated Herpesvirus Replication and Transcription Activator Transactivation by Interferon Regulatory Factor 7

    Get PDF
    Human herpesvirus 8 (HHV-8)/Kaposi’s sarcoma-associated herpesvirus infection goes through lytic and latent phases that are regulated by viral gene products, but very little is known about the involvement of host proteins. The replication and transcription activator (RTA) is a viral protein sufficient to initiate lytic replication by activating downstream genes, including the viral early gene open reading frame 57 (ORF 57), which codes for a posttranscriptional activator. In this study, we demonstrate that cellular interferon regulatory factor 7 (IRF-7) negatively regulates this process by competing with RTA for binding to the RTA response element in the ORF 57 promoter to down-regulate RTA-induced gene expression. We also show that alpha interferon represses RTA-mediated transactivation and that repression involves IRF-7. Our study indicates that upon HHV-8 infection, the host responds by suppression of lytic gene expression through binding of IRF-7 to the lytic viral gene promoter. These findings suggest that HHV-8 has developed a novel mechanism to induce but then subvert the innate antiviral response, specifically the interferon-signaling pathway, to regulate RTA activity and ultimately the viral latent/lytic replicative cycle

    UPDP: A Unified Progressive Depth Pruner for CNN and Vision Transformer

    Full text link
    Traditional channel-wise pruning methods by reducing network channels struggle to effectively prune efficient CNN models with depth-wise convolutional layers and certain efficient modules, such as popular inverted residual blocks. Prior depth pruning methods by reducing network depths are not suitable for pruning some efficient models due to the existence of some normalization layers. Moreover, finetuning subnet by directly removing activation layers would corrupt the original model weights, hindering the pruned model from achieving high performance. To address these issues, we propose a novel depth pruning method for efficient models. Our approach proposes a novel block pruning strategy and progressive training method for the subnet. Additionally, we extend our pruning method to vision transformer models. Experimental results demonstrate that our method consistently outperforms existing depth pruning methods across various pruning configurations. We obtained three pruned ConvNeXtV1 models with our method applying on ConvNeXtV1, which surpass most SOTA efficient models with comparable inference performance. Our method also achieves state-of-the-art pruning performance on the vision transformer model

    Research on the adsorption-diffusion mechanism of hydrogen sulfide based on Monte Carlo simulation

    Get PDF
    In order to clarify the microscopic dynamics mechanism of hydrogen sulfide (H2S) adsorption and diffusion in coal, and to reveal the influence mechanism of different temperatures and pressures on the molecular adsorption and diffusion characteristics of coal adsorbed H2S, based on the Giant Canonical Monte Carlo (GCMC), Molecular Dynamics (MD), and Density Functional Theory (DFT) methods, the adsorption-diffusion characteristics of H2S in the gas-fertilized coal macromolecule model at temperatures ranging from 273.15 K to 313.15 K and pressures ranging from 1 to 1 000 kPa were investigated using Material Studio software. The results showed that the saturated adsorption of H2S decreased from 38.34 mL/g to 31.85 mL/g at an increase in temperature from 273.15 K to 313.15 K, which is a 16.93% decrease. The effect of temperature on adsorption is most sensitive when the pressure is 1 kPa. The most significant interaction energy increased from −39.391 kJ/mol to −34.301 kJ/mol when the pressure was increased from 1 kPa to 1 000 kPa at a temperature of 293.15 K. With the pressure increased, the most significant interaction energy increased first rapidly and then slowly. During the adsorption of H2S, the isocratic heat of adsorption of H2S was in the range of 36.63−41.43 kJ/mol, which is a physical adsorption. The isocratic heat of adsorption showed a negative exponential change with increasing adsorption volume. The Gibbs free energy ΔG of H2S was from −3.57 to −24.57 kJ/mol, and the entropy of adsorption ΔS was from −0.126 to −0.194 8 kJ/(mol·K). The absolute values of ΔG and ΔS linearly decreased with increasing adsorption amount, and the adsorption spontaneity of H2S and the chaos of the system decreased. The interaction energy of H2S with gas-fertilized coal was ranged from −492.47 to −3 390.95 kJ/mol, which was dominated by van der Waals’ energy accounting for 58.67% of the total energy, and supplemented by electrostatic energy accounting for 41.33%. As the adsorption capacity increased, the absolute value of interaction energy increased, and the changes in adsorption capacity and interaction energy were consistent. H2S interacted most strongly with the carboxyl group, followed by the hydroxyl group. Double layer adsorption of H2S occurred around —OH, —COOH, —C=O. The temperature was increased from 273.15 K to 313.15 K. The diffusion coefficient of H2S molecules was increased from 1.066×10−10 m2/s to 2.025×10−10 m2/s, and the activation energy of diffusion was 11.206 kJ/mol. An increase in temperature can lead to the opening of previously closed pores and channels, increasing the connectivity of cracks. As the temperature rises, it increases the average free path of H2S molecules, enhancing their diffusion ability. The limiting heat of adsorption of H2S was 42.898 kJ/mol. The H2S concentration distribution showed a multi-peak structure, and H2S was distributed in a laminar structure in the gas-fertilized coal macromolecule model. H2S had hydrogen bonding with —OH, —COOH, and —C=O reactive groups on the coal body, and there was a weak chemisorption of H2S in the early stage of adsorption

    Simultaneous Determination of Three Bioactive Compounds in Traditional Chinese Medicine Patent Prescription Zuojin Pill by HPLC

    Get PDF
    A high-performance liquid chromatography (HPLC) method coupled with ultraviolet (UV) detection has been developed and validated for simultaneous quantification of berberine hydrochloride, evodiamine and rutaecarpine in Zuojin Pill. Chromatographic separation were achieved on a ODS-C18 column (250×4.6 mm i.d., 5.0 μm particle) through a 25 min gradient delivery of a mixture of A (acetonitrile) and B (0.3 % phosphoric acid-0.3 % triethylamine) at a flow rate of 0.8 mL/min at 40 °C. All of the analytes showed good linearity (r > 0.999). The method was validated for repeatability, precision, stability, accuracy and selectivity. The validated method was applied to quality control of Zuojin Pill from different manufacture.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    Switchable and tunable multiple-channel erbium-doped fiber laser using graphene-polymer nanocomposite and asymmetric two-stage fiber Sagnac loop filter

    Get PDF
    A high-performance multiple-channel erbium-doped fiber laser (EDFL) is proposed and experimentally demonstrated, using graphene-polymer nanocomposite as a multiwavelength equalizer and an asymmetric two-stage polarization-maintaining fiber (PMF) Sagnac loop as a flexible comb filter. At first, the filtering characteristics of the PMF Sagnac loop filter (SLF) are investigated. Both theoretical and experimental results show that it can provide a flexibly switchable and tunable comblike filtering. Then, the two-stage PMF SLF is inserted into a graphene-assisted EDFL cavity for generating multiwavelength oscillation. The extreme-high third-order optical nonlinearity of graphene is exploited to suppress the mode competition of the EDFL, and a stable multiple-channel lasing is observed. By carefully adjusting the polarization controllers in the two-stage PMF SLF, not only can the lasing-line number per channel be switchable between single and multiple wavelengths, but also the wavelength spacing in the triple-wavelength condition can be tunable. In the case of triple wavelengths per channel, up to 12 wavelengths with four channels stable oscillations can be achieved. The multiple-channel EDFL can keep a high extinction ratio of >40 dB and a narrow linewidth of <0.01 nm. (C) 2011 Optical Society of Americ

    High-power mid-infrared femtosecond master oscillator power amplifier Er:ZBLAN fiber laser system

    Get PDF
    High-power femtosecond mid-infrared (MIR) lasers are of vast importance to both fundamental research and applications. We report a high-power femtosecond master oscillator power amplifier laser system consisting of a single-mode Er:ZBLAN fiber mode-locked oscillator and pre-amplifier followed by a large-mode-area Er:ZBLAN fiber main amplifier. The main amplifier is actively cooled and bidirectionally pumped at 976 nm, generating a slope efficiency of 26.9%. Pulses of 8.12 W, 148 fs at 2.8 μm with a repetition rate of 69.65 MHz are achieved. To the best of our knowledge, this is the highest average power ever achieved from a femtosecond MIR laser source. Such a compact ultrafast laser system is promising for a wide range of applications, such as medical surgery and material processing
    corecore