159 research outputs found

    Simultaneous Penile Gangrene and Testicular Infarction Secondary to Calciphylaxis in a Uremic Patient

    Get PDF
    We report here a 46-year-old man with end stage renal disease (ESRD) secondary to type 2 diabetes, who had been on hemodialysis for 5 years. He had a painful glans lesion for 1 week. Five days later, he also complained of right testicular pain. Computed tomography of the pelvis demonstrated calcification of both penile arteries. Scrotal sonography revealed right testicular infarction. He received partial penectomy and right orchiectomy because of progressive lesions and intractable pain. Pathologic examination revealed testicular and penile tissue with necrotizing inflammation accompanied by multifocal calcification in the tunica media, compatible with calciphylaxis. This is the first report to document simultaneous penile gangrene and testicular infarction secondary to calciphylaxis

    Piezophototronic effect enhanced luminescence of zinc oxide nanowires

    Get PDF
    Experimental findings on electroluminescence or photoluminescence of ZnO nanowires have been drawn much attention due to their promising applications in many areas. One of the current challenges on this technology is a deeper understanding of this phenomenon in order to adopt it into practical device designs. In this work, a theoretical analysis of the stimulated emission of ZnO nanowires taking into consideration of the piezotronics effect has been conducted using the quantum mechanics theory. It is revealed that extra piezoelectric charges induced by applied mechanical forces increase the overall charge density of the nanowire, subsequently enhancing the emission intensity. Electronic bandgap varying with the diameter of the nanowire determines the peak value in the electromagnetic spectrum. Both wavelength and intensity of the stimulated emission can be tuned by controlling the dimension of the nanowires and external applied mechanical forces

    Non-Gaussianity from false vacuum inflation: Old curvaton scenario

    Full text link
    We calculate the three-point correlation function of the comoving curvature perturbation generated during an inflationary epoch driven by false vacuum energy. We get a novel false vacuum shape bispectrum, which peaks in the equilateral limit. Using this result, we propose a scenario which we call "old curvaton". The shape of the resulting bispectrum lies between the local and the false vacuum shapes. In addition we have a large running of the spectral index.Comment: 13 pages, 3 figures; v2 with minor revison; v3 final version to appear on JCA

    Ankle-Brachial Index Is a Powerful Predictor of Renal Outcome and Cardiovascular Events in Patients with Chronic Kidney Disease

    Get PDF
    Ankle-brachial index (ABI) is an accurate tool to diagnose peripheral arterial disease. The aim of this study was to evaluate whether ABI is also a good predictor of renal outcome and cardiovascular events in patients with chronic kidney disease (CKD). We enrolled 436 patients with stage 3–5 CKD who had not been undergoing dialysis. Patients were stratified into two groups according to the ABI value with a cut point of 0.9. The composite renal outcome, including doubling of serum creatinine level and commencement of dialysis, and the incidence of cardiovascular events were compared between the two groups. After a median follow-up period of 13 months, the lower ABI group had a poorer composite renal outcome (OR = 2.719, P = 0.015) and a higher incidence of cardiovascular events (OR = 3.260, P = 0.001). Our findings illustrated that ABI is a powerful predictor of cardiovascular events and renal outcome in patients with CKD

    Identification of Novel Susceptibility Loci for Kawasaki Disease in a Han Chinese Population by a Genome-Wide Association Study

    Get PDF
    Kawasaki disease (KD) is an acute systemic vasculitis syndrome that primarily affects infants and young children. Its etiology is unknown; however, epidemiological findings suggest that genetic predisposition underlies disease susceptibility. Taiwan has the third-highest incidence of KD in the world, after Japan and Korea. To investigate novel mechanisms that might predispose individuals to KD, we conducted a genome-wide association study (GWAS) in 250 KD patients and 446 controls in a Han Chinese population residing in Taiwan, and further validated our findings in an independent Han Chinese cohort of 208 cases and 366 controls. The most strongly associated single-nucleotide polymorphisms (SNPs) detected in the joint analysis corresponded to three novel loci. Among these KD-associated SNPs three were close to the COPB2 (coatomer protein complex beta-2 subunit) gene: rs1873668 (p = 9.52×10−5), rs4243399 (p = 9.93×10−5), and rs16849083 (p = 9.93×10−5). We also identified a SNP in the intronic region of the ERAP1 (endoplasmic reticulum amino peptidase 1) gene (rs149481, pbest = 4.61×10−5). Six SNPs (rs17113284, rs8005468, rs10129255, rs2007467, rs10150241, and rs12590667) clustered in an area containing immunoglobulin heavy chain variable regions genes, with pbest-values between 2.08×10−5 and 8.93×10−6, were also identified. This is the first KD GWAS performed in a Han Chinese population. The novel KD candidates we identified have been implicated in T cell receptor signaling, regulation of proinflammatory cytokines, as well as antibody-mediated immune responses. These findings may lead to a better understanding of the underlying molecular pathogenesis of KD

    An Overview of Regional Experiments on Biomass Burning Aerosols and Related Pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS

    Get PDF
    By modulating the Earth-atmosphere energy, hydrological and biogeochemical cycles, and affecting regional-to-global weather and climate, biomass burning is recognized as one of the major factors affecting the global carbon cycle. However, few comprehensive and wide-ranging experiments have been conducted to characterize biomass-burning pollutants in Southeast Asia (SEA) or assess their regional impact on meteorology, the hydrological cycle, the radiative budget, or climate change. Recently, BASEASIA (Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment) and the 7-SEAS (7- South-East Asian Studies) Dongsha Experiment were conducted during the spring seasons of 2006 and 2010 in northern SEA, respectively, to characterize the chemical, physical, and radiative properties of biomass-burning emissions near the source regions, and assess their effects. This paper provides an overview of results from these two campaigns and related studies collected in this special issue, entitled Observation, modeling and impact studies of biomass burning and pollution in the SE Asian Environment. This volume includes 28 papers, which provide a synopsis of the experiments, regional weatherclimate, chemical characterization of biomass-burning aerosols and related pollutants in source and sink regions, the spatial distribution of air toxics (atmospheric mercury and dioxins) in source and remote areas, a characterization of aerosol physical, optical, and radiative properties, as well as modeling and impact studies. These studies, taken together, provide the first relatively complete dataset of aerosol chemistry and physical observations conducted in the sourcesink region in the northern SEA, with particular emphasis on the marine boundary layer and lower free troposphere (LFT). The data, analysis and modeling included in these papers advance our present knowledge of source characterization of biomass-burning pollutants near the source regions as well as the physical and chemical processes along transport pathways. In addition, we raise key questions to be addressed by a coming deployment during springtime 2013 in northern SEA, named 7-SEASBASELInE (Biomass-burning Aerosols Stratocumulus Environment: Lifecycles and Interactions Experiment). This campaign will include a synergistic approach for further exploring many key atmospheric processes (e.g., complex aerosol-cloud interactions) and impacts of biomass burning on the surface-atmosphere energy budgets during the lifecycles of biomass burning emissions

    Core Site-Moiety Maps Reveal Inhibitors and Binding Mechanisms of Orthologous Proteins by Screening Compound Libraries

    Get PDF
    Members of protein families often share conserved structural subsites for interaction with chemically similar moieties despite low sequence identity. We propose a core site-moiety map of multiple proteins (called CoreSiMMap) to discover inhibitors and mechanisms by profiling subsite-moiety interactions of immense screening compounds. The consensus anchor, the subsite-moiety interactions with statistical significance, of a CoreSiMMap can be regarded as a “hot spot” that represents the conserved binding environments involved in biological functions. Here, we derive the CoreSiMMap with six consensus anchors and identify six inhibitors (IC50<8.0 µM) of shikimate kinases (SKs) of Mycobacterium tuberculosis and Helicobacter pylori from the NCI database (236,962 compounds). Studies of site-directed mutagenesis and analogues reveal that these conserved interacting residues and moieties contribute to pocket-moiety interaction spots and biological functions. These results reveal that our multi-target screening strategy and the CoreSiMMap can increase the accuracy of screening in the identification of novel inhibitors and subsite-moiety environments for elucidating the binding mechanisms of targets

    Genome-Wide Identification, Characterization and Phylogenetic Analysis of the Rice LRR-Kinases

    Get PDF
    LRR-kinases constitute the largest subfamily of receptor-like kinases in plants and regulate a wide variety of processes related to development and defense. Through a reiterative process of sequence analysis and re-annotation, we identified 309 LRR-kinase genes in the rice genome (Nipponbare). Among them, 127 genes in the Rice Annotation Project Database and 85 in Refseq of NCBI were amended (in addition, 62 LRR-kinase genes were not annotated in Refseq). The complete set of LRR-kinases was characterized. These LRR-kinases were classified into five groups according to phylogenetic analysis, and the genes in groups 1, 2, 3 and 4 usually have fewer introns than those in group 5. The introns in the LRR domain, which are highly conserved in regards to their positions and configurations, split the first Leu or other amino residues at this position of the ‘xxLxLxx’ motif with phase 2 and usually separate one or more LRR repeats exactly. Tandemly repeated LRR motifs have evolved from exon duplication, mutation and exon shuffling. The extensive distribution and diversity of the LRR-kinase genes have been mainly generated by tandem duplication and mutation after whole genome duplication. Positive selection has made a limited contribution to the sequence diversity after duplication, but positively selected sites located in the LRR domain are thought to involve in the protein-protein interaction
    corecore