248 research outputs found

    Investigation of Ce3+ Adsorption by Sn(OH)X by the Gravimetric Method

    Get PDF
    In this work, the adsorption of Ce3+ by Sn(OH)2, SnO, and Sn(OH)4 was investigated. By comparing the mass of cerium oxalate caused by the adsorbed Ce3+, Sn(OH)2 and Sn(OH)4 have the ability to adsorb Ce3+, while Sn(OH)4 has a stronger adsorption capacity of Ce3+. However, SnO does not have the ability. The possible mechanism of Sn(OH)X adsorption Ce3+ was further discussed. And the result indicates that the hydroxide can adsorb cations by means of anionic groups on its surface in the solution so that the cations can be enriched on the hydroxide surface. The paper provides a new method for adjusting the microstructure of catalysts, which has a promising prospect in the field of catalysts preparation

    Fabrication and microstructural characterization of silica aerogel by aging additional pressurization

    Get PDF
    SiO2 aerogel with Light-weight and low thermal conductivity is a promising candidate for thermal insulator used for aerospace vehicles. In this paper, we report the preparation and microstructural characterization of SiO2 aerogel by aging pressurization using supercritical drying method. The results showed that the aging pressurization can rapid increase the bulk density from 0.1g/cm3 to 0.45g/cm3 with the pressure changing from 200Pa to 600Pa. When the pressure increases to 800Pa, the density was increased to 0.46g/cm3 slowly. Further polycondensation is driven by the increasing of contact area between skeleton particles when the aging pressure increased. The grid structure became densification and saturation when the aging pressure approached 800Pa. SEM method gives the evidence of increase of aging pressure, which can help to increase the size of secondary grains. Nitrogen sorption-desorption measurements exhibit an unimodal pore distribution and low specific area and porosity with the increase of aging pressure. Real density test showed that the bulk density increased by pressure. Bulk density, gain size and pore structure distribution can be controlled effectively by aging pressurization

    Thermal properties of highly porous fibrous ceramics

    Get PDF
    Highly porous fibrous ceramics were fabricated by vacuum-molding the fiber slurry and sintering the dried felt. The materials comprised of a random network of ceramic fibers and air, with the pore sizes on micron scale. The effects of binder content and porosity on the microstructure and room-temperature thermal conductivity of fibrous ceramics were investigated. It was found that the room-temperature thermal conductivity increased with increasing binder content. In addition, the thermal conductivity decreased from 0.18 to 0.06 W/(m·K) when porosity increased from 73% to 90%, showing nearly a linear relationship. The high-temperature thermal conductivity in the range of 200-1200℃ for three different porosities were also investigated. The thermal conductivity increased as temperature and density increased. Furthermore, the porous ceramics were impregnated with silica aerogel to further lower the thermal conductivity. The room-temperature thermal conductivity decreased from 0.049 to 0.040 W/(m·K), and the back temperature decreased from 870℃ to 750℃ after the aerogel impregnation, showing better high-temperature insulation performance

    Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic Acid in Arabidopsis.

    Get PDF
    International audienceRemodeling of actin filament arrays in response to biotic and abiotic stimuli is thought to require precise control over the generation and availability of filament ends. Heterodimeric capping protein (CP) is an abundant filament capper, and its activity is inhibited by membrane signaling phospholipids in vitro. How exactly CP modulates the properties of filament ends in cells and whether its activity is coordinated by phospholipids in vivo is not well understood. By observing directly the dynamic behavior of individual filament ends in the cortical array of living Arabidopsis thaliana epidermal cells, we dissected the contribution of CP to actin organization and dynamics in response to the signaling phospholipid, phosphatidic acid (PA). Here, we examined three cp knockdown mutants and found that reduced CP levels resulted in more dynamic activity at filament ends, and this significantly enhanced filament-filament annealing and filament elongation from free ends. The cp mutants also exhibited more dense actin filament arrays. Treatment of wild-type cells with exogenous PA phenocopied the actin-based defects in cp mutants, with an increase in the density of filament arrays and enhanced annealing frequency. These cytoskeletal responses to exogenous PA were completely abrogated in cp mutants. Our data provide compelling genetic evidence that the end-capping activity of CP is inhibited by membrane signaling lipids in eukaryotic cells. Specifically, CP acts as a PA biosensor and key transducer of fluxes in membrane signaling phospholipids into changes in actin cytoskeleton dynamics

    Surface characterization, mechanical properties and corrosion behaviour of ternary based ZneZnOeSiO2composite coating of mild steel

    Get PDF
    Zinc coatings are obtained either from cyanide, non-cyanide alkaline or acid solutions. Because of the pollution and high cost associated with cyanide, deposition from other baths is gaining importance. In order to develop a bath with additive that could produce a quality coating is the motivation behind this present work which is surface modification of Zne8ZnOeSiO2 nano composite coating on mild steel surface by electrodeposition route. The influence of SiO2 on Zne8ZnO sulphate electrolyte on the properties and microstructure of the produced nano-coatings were investigated. The SiO2 was varied from 0 to 16wt%. The microstructure characteristics of these produced series composites coating were investigated using scanning electron microscopy couple with energy dispersive spectroscopy (SEM/EDS), X-ray diffraction and atomic force microscopy (AFM). The corrosion degradation properties in 3.65% NaCl medium were studied using potentiodynamic polarization technique and characterized by high resolution optical microscope (HR-OPM). The hardness and wear of the composite coating were measured with high diamond microhardness tester and dry abrasive MTR-300 testers respectively. The results showed that average hardness value of 142.5 and 251.2HV and corrosion rate of 0.13088 and 0.00122 mm/yr were obtained for the 0 and 16wt% SiO2 in Zne8ZnO. The work have established that upto 16% SiO2 in Zne8ZnO composite coating on mild steel can be used in improving the microhardness, wear loss and corrosion resistance of mild stee
    corecore