3,554 research outputs found

    Офорт Олени Кульчицької “За море” і тема еміграції

    Get PDF
    Illustrators of the Ukrainian press at the 2nd half ХІХ to еarly XX c. and an artist Olena Kul’chitska is known consider the theme of еmigration and expressed it in the form of social satire

    Appraisal of nuclear waste isolation in the vadose zone in arid and semiarid regions (with emphasis on the Nevada Test Site)

    Get PDF
    An appraisal was made of the concept of isolating high-level radioactive waste in the vadose zone of alluvial-filled valleys and tuffaceous rocks of the Basin and Range geomorphic province. Principal attributes of these terranes are: (1) low population density, (2) low moisture influx, (3) a deep water table, (4) the presence of sorptive rocks, and (5) relative ease of construction. Concerns about heat effects of waste on unsaturated rocks of relatively low thermal conductivity are considered. Calculations show that a standard 2000-acre repository with a thermal loading of 40 kW/acre in partially saturated alluvium or tuff would experience an average temperature rise of less than 100{sup 0}C above the initial temperature. The actual maximum temperature would depend strongly on the emplacement geometry. Concerns about seismicity, volcanism, and future climatic change are also mitigated. The conclusion reached in this appraisal is that unsaturated zones in alluvium and tuff of arid regions should be investigated as comprehensively as other geologic settings considered to be potential repository sites

    Instantaneous Bethe-Salpeter Equation and Its Exact Solution

    Full text link
    We present an approach to solve a Bethe-Salpeter (BS) equation exactly without any approximation if the kernel of the BS equation exactly is instantaneous, and take positronium as an example to illustrate the general features of the solutions. As a middle stage, a set of coupled and self-consistent integration equations for a few scalar functions can be equivalently derived from the BS equation always, which are solvable accurately. For positronium, precise corrections to those of the Schr\"odinger equation in order vv (relative velocity) in eigenfunctions, in order v2v^2 in eigenvalues, and the possible mixing, such as that between SS (PP) and DD (FF) components in JPC=1J^{PC}=1^{--} (JPC=2++J^{PC}=2^{++}) states as well, are determined quantitatively. Moreover, we also point out that there is a problematic step in the classical derivation which was proposed first by E.E. Salpeter. Finally, we emphasize that for the effective theories (such as NRQED and NRQCD etc) we should pay great attention on the corrections indicated by the exact solutions.Comment: 4 pages, replace for shortening the manuscrip

    Blow-up and global existence for a general class of nonlocal nonlinear coupled wave equations

    Get PDF
    We study the initial-value problem for a general class of nonlinear nonlocal coupled wave equations. The problem involves convolution operators with kernel functions whose Fourier transforms are nonnegative. Some well-known examples of nonlinear wave equations, such as coupled Boussinesq-type equations arising in elasticity and in quasi-continuum approximation of dense lattices, follow from the present model for suitable choices of the kernel functions. We establish local existence and sufficient conditions for finite time blow-up and as well as global existence of solutions of the problem.Comment: 11 pages. Minor changes and added reference

    Instability and stability properties of traveling waves for the double dispersion equation

    Get PDF
    In this article we are concerned with the instability and stability properties of traveling wave solutions of the double dispersion equation  uttuxx+auxxxxbuxxtt=(up1u)xx ~u_{tt} -u_{xx}+a u_{xxxx}-bu_{xxtt} = - (|u|^{p-1}u)_{xx}~ for  p>1~p>1,  ab>0~a\geq b>0. The main characteristic of this equation is the existence of two sources of dispersion, characterized by the terms uxxxxu_{xxxx} and uxxttu_{xxtt}. We obtain an explicit condition in terms of aa, bb and pp on wave velocities ensuring that traveling wave solutions of the double dispersion equation are strongly unstable by blow up. In the special case of the Boussinesq equation (b=0b=0), our condition reduces to the one given in the literature. For the double dispersion equation, we also investigate orbital stability of traveling waves by considering the convexity of a scalar function. We provide both analytical and numerical results on the variation of the stability region of wave velocities with aa, bb and pp and then state explicitly the conditions under which the traveling waves are orbitally stable.Comment: 16 pages, 4 figure

    Declarative Modeling–An Academic Dream or the Future for BPM?

    Get PDF
    Declarative modeling has attracted much attention over the last years, resulting in the development of several academic declarative modeling techniques and tools. The absence of empirical evaluations on their use and usefulness, however, raises the question whether practitioners are attracted to using those techniques. In this paper, we present a study on what practitioners think of declarative modeling. We show that the practitioners we involved in this study are receptive to the idea of a hybrid approach combining imperative and declarative techniques, rather than making a full shift from the imperative to the declarative paradigm. Moreover, we report on requirements, use cases, limitations, and tool support of such a hybrid approach. Based on the gained insight, we propose a research agenda for the development of this novel modeling approach

    Evolution of Parton Fragmentation Functions at Finite Temperature

    Get PDF
    The first order correction to the parton fragmentation functions in a thermal medium is derived in the leading logarithmic approximation in the framework of thermal field theory. The medium-modified evolution equations of the parton fragmentation functions are also derived. It is shown that all infrared divergences, both linear and logarithmic, in the real processes are canceled among themselves and by corresponding virtual corrections. The evolution of the quark number and the energy loss (or gain) induced by the thermal medium are investigated.Comment: 21 pages in RevTex, 10 figure

    Role of disorder in half-filled high Landau levels

    Full text link
    We study the effects of disorder on the quantum Hall stripe phases in half-filled high Landau levels using exact numerical diagonalization. We show that, in the presence of weak disorder, a compressible, striped charge density wave, becomes the true ground state. The projected electron density profile resembles that of a smectic liquid. With increasing disorder strength W, we find that there exists a critical value, W_c \sim 0.12 e^2/\epsilon l, where a transition/crossover to an isotropic phase with strong local electron density fluctuations takes place. The many-body density of states are qualitatively distinguishable in these two phases and help elucidate the nature of the transition.Comment: 4 pages, 4 figure

    Threshold temperature for pairwise and many-particle thermal entanglement in the isotropic Heisenberg model

    Full text link
    We study the threshold temperature for pairwise thermal entanglement in the spin-1/2 isotropic Heisenberg model up to 11 spins and find that the threshold temperature for odd and even number of qubits approaches the thermal dynamical limit from below and above, respectively. The threshold temperature in the thermodynamical limit is estimated. We investigate the many-particle entanglement in both ground states and thermal states of the system, and find that the thermal state in the four-qubit model is four-particle entangled before a threshold temperature.Comment: 4 pages with 1 fig. More discussions on many-particle ground-state and thermal entanglement in the multiqubit Heisenberg model from 2 to 11 qubits are adde
    corecore