
Declarative Modeling—An Academic Dream or
the Future for BPM?

Hajo A. Reijers1,2, Tijs Slaats3,4, and Christian Stahl1

1 Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{H.A.Reijers, C.Stahl}@tue.nl
2 Perceptive Software, Piet Joubertstraat 4, 7315 AV Apeldoorn, The Netherlands

3 IT University of Copenhagen, Rued Langgaardsvej 7, 2300 Copenhagen, Denmark
TSlaats@itu.dk

4 Exformatics A/S, Lautrupsgade 13, 2100 Copenhagen, Denmark

Abstract. Declarative modeling has attracted much attention over the
last years, resulting in the development of several academic declarative
modeling techniques and tools. The absence of empirical evaluations on
their use and usefulness, however, raises the question whether practi-
tioners are attracted to using those techniques. In this paper, we present
a study on what practitioners think of declarative modeling. We show
that the practitioners we involved in this study are receptive to the idea
of a hybrid approach combining imperative and declarative techniques,
rather than making a full shift from the imperative to the declarative
paradigm. Moreover, we report on requirements, use cases, limitations,
and tool support of such a hybrid approach. Based on the gained insight,
we propose a research agenda for the development of this novel modeling
approach.

1 Introduction

Imperative modeling is currently the most prominent modeling paradigm in
BPM. Imperative modeling techniques are implemented in almost every model-
ing tool, and many imperative modeling languages have been developed, most
prominently, Event-Driven Process Chains (EPCs) and Business Process Mod-
eling Notation. Imperative models take an “inside-out” approach; that is, every
possible execution sequence must be modeled explicitly. As a consequence, im-
perative modeling may lead to over-specification and lack of flexibility, making
it difficult to defer decisions at runtime and to change existing process mod-
els [21,2].

To overcome these shortcomings, declarative modeling approaches have been
proposed [3]. In contrast to imperative approaches, declarative models take an
“outside-in” approach. Instead of describing how the process has to work ex-
actly, only the essential characteristics are described. To this end, constraints
are specified that restrict the possible execution of activities.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/50528066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

Research on declarative modeling has gained increasing interest over the last
years. Declarative languages, such as Declare [3] (formerly known as DecSer-
Flow), DCR Graphs [12] and SCIFF [14], have been developed. These languages
have been integrated in academic and industrial modeling tools [24].

Beside the development of declarative techniques, also empirical research
has been conducted to study the relation between imperative and declarative
approaches [8,9,22,20]. It is well understood how to specify properties of a busi-
ness process, but it is still not clear how to define a business process modeling
languages that is understandable [8] on the one hand, and enables maintainabil-
ity [9], expressiveness and modeling comfort, on the other hand.

To the best of our knowledge, there does not exist any studies that reflect
on the question whether declarative techniques can be used in practise from a
practitioner’s standpoint. This raises a question, which has not been answered
yet: Do practitioners see opportunities to use declarative techniques?

The contribution of this paper is to present what practitioners think of declar-
ative modeling. In that way, we close the gap between research on declarative
techniques and empirical investigations on declarative modeling. Our results are
based on a workshop on declarative modeling with ten professionals from in-
dustry, including both consultants involved in modeling projects and developers
of industrial modeling tools. During the workshop, we introduced declarative
modeling techniques, performed two modeling assignments, and discussed the
prospects of a declarative approach. The evaluation, both qualitative and quan-
titative, shows that practitioners see good opportunities for a hybrid approach
combining imperative and declarative techniques while they are skeptical regard-
ing a purely declarative approach. With the gained insight from the discus-
sion, we present requirements on such a hybrid approach, use cases, limitations,
and requirements concerning tool support. Shifting the focus from imperative
and declarative modeling to a hybrid approach raises many research questions.
Therefore, we propose a research agenda for the BPM community to make the
hybrid approach work.

We continue with a brief introduction to Declare and DCR Graphs, two
declarative approaches we used throughout the workshop. In Sect. 3, we de-
scribe the outline of the workshop and our evaluation method. The quantitative
evaluation is described in Sect. 4, and Sect. 5 reports on the qualitative evalua-
tion. In Sect. 6, we present our research agenda. We close with a conclusion and
directions for future work.

2 Declare and DCR Graphs by Example

In this section, we briefly introduce two declarative modeling approaches, De-
clare [3,24] and DCR Graphs [12], using the following example of a document
management system. To simplify the presentation, we restrict ourselves to the
control flow dimension and do not consider data or resources.

Example 1. Every case of the document management system is initially created
and eventually closed. For a created case, an arbitrary number of documents can



3

Fig. 1. Declare model of the document management system

be uploaded. An uploaded document can be downloaded or searched. At any time,
a case can be locked. After locking a case, it is not possible to upload a document;
still, uploaded documents can be downloaded and searched. Furthermore, in
every case, meetings can be held. To hold a meeting, it has to be (re-)scheduled.
Meetings can be rescheduled arbitrarily often, but it is not possible to schedule
more than one meeting in advance.

2.1 Declare

A Declare model consists of activities and constraints. An activity is depicted
as a rectangle and a constraint as a hyper-arc (i.e., a constraint connects one
or more activities). From the specification, we identify eight activities which are
highlighted in the description. Figure 1 shows the Declare model of the example.
The init symbol on top of activity Create Case specifies that every case of the
document management system starts with activity Create Case. Likewise, the
last symbol on top of activity Close Case specifies that the final activity of every
case of the document management system is Close Case.

There are three types of arcs in Fig. 1. Each arc type specifies one type of
constraint. The precedence constraint, modeled as an arc from Upload Document
to Download Document specifies that a document has to be uploaded before
it can be downloaded. Likewise, we can only search a document once it has
been uploaded (arc from Upload Document to Search Document). The second
type of constraint is the not-succession constraint, which is modeled by an arc
from Lock Case to Upload Document. It specifies that after a case has been
locked, we cannot upload new documents. The third type of constraint, alternate
precedence, is the arc from Schedule Meeting to Hold Meeting. It means that a
meeting can only be held after it has been (re-)scheduled at least once. Moreover,
after a meeting has been held, the next meeting has to be (re-)scheduled before



4

Fig. 2. DCR Graph model of the document management system

it can be held (i.e., activity Hold Meeting has to be followed by Schedule Meeting
before Hold Meeting can be executed again).

As mentioned in the introduction, a declarative model only describes the
essential characteristics of a process rather than how the process has to work
exactly. For example, holding and (re-)scheduling meetings is independent from
handling documents. Therefore the respective activities are not connected by
arcs; that is, no constraint restricts their interplay. To execute the model in Fig. 1,
one has to determine which activities are enabled by evaluating all constraints.
Initially, it is the start activity, Create Case. After this activity is executed,
any of the activities Schedule Meeting, Upload Document, Lock Case and Close
Case can occur. A Declare model can be enacted and executed. The tool then
computes the enabled transitions for every state [24].

2.2 DCR Graphs

A DCR Graph model consists of activities, relations, and a runtime marking.
Activities are depicted as rectangles with an “ear” that can contain the roles
which can execute the activity. Activities can be nested under super-activities,
depicted by drawing an activity inside the rectangle of another activity, in which
case any relation that applies to the super-activity, applies to all its sub-activities.
Only the atomic activities (that do not contain any sub-activities of their own)
are executable. The relations are drawn as arrows between activities.

Figure 2 shows the DCR model of the example. The first activity is Create
Case, which should occur before all other activities can occur. We model this
behaviour by the yellow condition relation from Create Case to the super-activity
Manage Case, containing all other activities. The condition relation states that
the second activity (in this case any sub-activity of Manage Case) can not occur
before the first activity (in this case Create Case). We also require that Create



5

Case happens only once, which we model through the dynamic exclusion relation
drawn as a red arrow with a percentage sign at the end. Through this relation
Create Case excludes itself from the workflow when it is executed, meaning that
it can not be executed anymore afterward. The next two activities are Schedule
Meeting and Hold Meeting. We should always schedule a meeting before we can
hold a meeting, but it might be the case that a meeting is rescheduled before it
is held. We model this in the following way: Hold Meeting is initially excluded,
meaning that at the start of the workflow it can not be executed before it is
included. Hold Meeting is included by doing Schedule Meeting, modelled by the
dynamic inclusion relation, drawn as a green arrow with a plus sign in the end.
Hold Meeting excludes itself meaning that it can not be executed again before
there has been a new occurrence of Schedule Meeting. The next three activities
are Upload Document, Download Document, and Search Documents. We can not
download or search documents before at least one document has been uploaded,
therefore those activities are initially excluded and will be included by Upload
Document. The case can also be locked through the activity Lock Case, which
makes it impossible to upload further documents, therefore Lock Case excludes
Upload Document. Finally we can close the case by executing the activity Close
Case. We model this by having Close Case exclude the super-activity Manage
Case. Because all activities are nested under Manage Case, Close Case will
exclude all activities from the workflow.

The final two relations of DCR Graphs are not used in the example. First
there is the response relation which states that one activity requires another
activity to happen in the future, when this occurs we say that the second activity
is a pending response and annotate it with an exclamation mark. A workflow is in
an accepting state while there are no included pending responses, in case there
are included pending responses these should be executed before the workflow
can be closed. The second relation that is not shown is the milestone relation, it
captures this accepting condition on the level of activities by stating that while
some activity is a pending response, some other activity can not be executed.

We represent the runtime of a DCR Graph by showing which activities have
been executed at least once before by drawing them with a green check-mark,
showing which activities are pending responses by drawing them with a red
exclamation mark and showing which activities are currently excluded by draw-
ing them with a dashed line instead of a solid line. We call these three sets of
activities the marking of the DCR Graph. Based on the marking we can deter-
mine which activities are enabled: Activities which are excluded (drawn with
a dashed line) are not enabled and activities that are blocked by a condition
and/or milestone relation are also not enabled. In the latter case, we show this
by drawing a red stop-mark on the activity. In Fig. 2, one can see that the only
initially enabled activity is Create Case. All other activities are either excluded
(drawn with dashed lines) or blocked through the condition relation (drawn with
a red stop-mark). We distinguish between being excluded and blocked by a con-
dition/milestone relation because we consider these two as essentially different
states of the activity: When it is blocked it is still a part of the workflow, but



6

being stopped from executing. When it is excluded it is not considered as a part
of the workflow at that time. This is also why only included pending responses
will block the workflow from being closed.

2.3 Comparison

Figures 1 and 2 clearly illustrate the idea behind declarative modeling. The main
difference between DCR Graphs and Declare is that the DCR Graph approach
allows to define any constraint using the five basic relations, while one has to
define many more constraint for Declare (some of them are logical combinations
of simpler constraints). Also, Declare represents the runtime of a workflow by
showing the state of the individual constraints—that is, which constraints are
(possibly) satisfied, and which constraints are (possibly) violated. DCR Graphs,
by contrast, represents the runtime of a workflow by showing which tasks have
been executed at least once before, which tasks are pending as a response and
should be done some time in the future, and which tasks are currently included in
the workflow. While on infinite traces DCR Graphs are strictly more expressive
than Declare, this has no impact on practical business process modeling: The
processes under consideration typically produce finite traces.

3 Method

For our evaluation, we worked together with Perceptive Software, a provider of
enterprise content management and BPM technologies. We invited both consul-
tants, who engage with clients to model their processes and implement BPM
suites using such models, and professionals who contribute to the development
of the toolsets. We planned a single workshop that went through the four phases,
as depicted in Fig. 3.

In the first phase (Introduction), we provided the participants with the mo-
tivation for organizing the workshop and gave them a generic introduction to
declarative principles. After this phase, we split the groups into two sub-groups
of equal size. We first randomly assigned half of the consultants to group 1 and
the other half to group 2. We did the same for the developers after that. In
this way, we ensured an even distribution of consultants and developers over the
groups.

The second phase was specific for each group and consisted of a tutorial on
the techniques under consideration (Explanation). In other words, one group
received the tutorial on DCR Graphs and the other on Declare. The tutorials
were provided by separate moderators for each group. Each moderator had deep
expertise in the technique that he explained. The tutorials were synchronized
beforehand between the moderators to guarantee a similar level of depth and
the same duration.

Following up on the tutorials, each group received two assignments. These
assignments were the same for both groups and required the participants to
translate the assignment material into process models (Modeling). Clearly, the



7

Explanation ModelingIntroduction

DCR Graphs

Declare

Assignment 1
Assignment 2

Participant 1

Participant n

Assignment 1
Assignment 2

Participant n/2

Participant n/2+1

Discussion

Participant 1

Participant n

Participant n/2

Participant n/2+1

Workshop

Fig. 3. Organization of the workshop

sub-group who received the tutorial on DCR Graphs used this technique; the
other sub-group used Declare. The assignments can be found back at http://

www.win.tue.nl/ais/doku.php?id=research:declare:bpm2013. As we were
not so much interested in checking the correctness of the solutions but in trans-
ferring knowledge on the techniques to the participants, we encouraged them to
work in pairs within each sub-group.

The final phase re-united the sub-groups (Discussion). During this phase,
we first had the participants fill out a questionnaire on usefulness, ease of use,
and intent to use as proposed by Moody [17]. The questionnaire can be used
to get a broad-brush insight into the perceived quality of an IS design method,
building on the concepts known from the Technology Acceptance Model as pro-
posed by Davis [6]. We extended the questions with some more to gather de-
mographic data on the group. The used questions can also be found at http:

//www.win.tue.nl/ais/doku.php?id=research:declare:bpm2013. After the
questionnaire, we engaged in a semi-structured discussion with the group. This
discussion was moderated by one of the authors, while the other authors took
notes. The independently taken notes were used to reach consensus on how the
participants reflected on the questions.

The insights that we gathered during the last phase of the evaluation with
the questionnaire will be referred to as the quantitative evaluation, because the
design of Davis’ list allows for measuring the strength of the perceptions on ease
of use, usefulness, and intent to use. Our insights on the modeling phase and the
open part of the discussion phase will be dealt with as the qualitative evaluation,
as they add a qualifying lens on the results. These respective evaluations will be
discussed next.

http://www.win.tue.nl/ais/doku.php?id=research:declare:bpm2013
http://www.win.tue.nl/ais/doku.php?id=research:declare:bpm2013
http://www.win.tue.nl/ais/doku.php?id=research:declare:bpm2013
http://www.win.tue.nl/ais/doku.php?id=research:declare:bpm2013


8

4 Quantitative Evaluation

4.1 Demographics

Overall, ten professionals participated in the workshop. Of these, five are ac-
tive as consultants, modeling processes at client sites and implementing process
management software, while the other five are involved in different roles associ-
ated to the development of process modeling and workflow tools (product man-
ager/architect/developer). For the entire group, the average number of years of
experience in the BPM domain was more than 11 years. Of the ten participants,
on a scale of 1 to 5, three considered themselves to have an intermediate exper-
tise in process modeling (level=3), three to have an advanced level of expertise
(level=4), and the remaining four people considered themselves to be experts
(level=5). Finally, the participants indicated that on average they had each read
close to 15 different process models in the preceding 12 months, while each had
created or updated nearly four models on average in the same period. We are
aware that the number of professionals is rather low. However, within a given
time frame, we were choosing the day for which most professionals indicated
their availability.

4.2 Validity and Reliability

Prior to performing an in-depth analysis of the data that had been gathered
through the questionnaire, the validity and reliability of the empirical indicators
were checked. We determined all correlations between the responses for ques-
tions that were used to measure to same construct (inter-item correlations) and
identified no item that displayed a low convergent validity. In other words, the
questions and their grouping to measure the constructs appeared valid. Next, we
used Cronbach’s alpha to test the reliability of the items to measure the various
constructs. This is a test to check internal consistency of the questions. While
there is no authoritative level for Cronbach’s alpha, it is generally assumed that
levels above 0.7 point at a good reliability of the items [18]. Adequate levels were
established for Perceived Usefulness (0.743) and Perceived Ease of Use (0.826).
However, Intention to Use scored too low (0.600). For this reason, we removed
the latter construct from our main analysis and will only report on the mean
scores of the items. Note that it was the only construct measured using just two
items—an approach to be reconsidered in future applications of the question-
naire.

4.3 Results

Our main analysis then focused on this question: Are the considered techniques,
DCR Graphs vs. Declare, perceived differently by the groups? To select the
appropriate technique, we established with the Shapiro-Wilk test that the re-
spondent answers were normally distributed. We could, therefore, proceed with
applying a one-way ANOVA test with Perceived Usefulness and Perceived Ease



9

Perceived 
Usefulness 

Mean = .29 
Std. Dev. = .453 
N = 10 

Perceived 
Ease of Use 

Mean = .62 
Std. Dev. = .629 
N = 10 

(Very negative) (Very negative) (Very positive) (Very positive) 

Fig. 4. Histograms for Perceived Usefulness and Perceived Ease of Use

of Use as dependent variables and the technique employed as factor. The test
generated p-values of 0.116 and 0.939 for Perceived Usefulness and Perceived
Ease of Use, respectively. By maintaining a confidence level of 95%, both of
these values exceed the 0.05 threshold. In other words, any differences in per-
ception between the used techniques are not statistically significant. Therefore,
we must reject the idea that people perceive the techniques as different in either
their usefulness or their ease of use.

This first important insight allows us to aggregate the responses received from
both groups to determine a view on the usefulness and ease of use of declarative
techniques on a more general level. Figure 4 shows the histograms for the two
constructs under consideration, Perceived Usefulness and Perceived Ease of Use,
aggregating the responses from all ten respondents. Also displayed is the fitted
normal distribution for both constructs.

The histograms display the frequencies of the scores on a scale of -2.0 (very
negative) to +2.0 (very positive). The 0 value indicates the neutral stance (not
negative, not positive). What can be seen is that the averages of the distri-
butions for both constructs are positive, hinting at a receptive mood toward
declarative techniques in terms of both constructs. Note that the mean values
for the two items under consideration for Intention to Use are 0.00 and 1.00. Sec-
ond, Perceived Ease of Use seems to be more positively evaluated than Perceived
Usefulness, with respective mean values of 0.62 and 0.29.

To determine whether the optically favorable outcomes are indeed statisti-
cally significant, we applied one sample t-tests. Like in our previous test, we used
a confidence level of 95%, which means that we will only treat p-values below 0.05
as statistically significant. The outcomes of the t-tests are that the positive mean
score for Perceived Ease of Use is significantly different from zero (p=0.013),
but that this is—just—not the case for Perceived Usefulness (p=0.076). In other
words, one can trust that the positive stance toward the ease of use is not a



10

matter of chance. However, this cannot be ruled out for usefulness, despite its
closeness to the cut-off value. Apparently, the involved respondents can easily
use the method, despite the limited amount of training received. They were
not similarly outspoken about the usefulness of a declarative technique, albeit
certainly not negative either.

We finally checked whether the years of experience, the level of expertise, the
type of role (consultant vs. non-consultant), or the modeling intensity in terms
of models read or created had any relation to the outcomes. Interestingly, we
could see that the most negative responses on Perceived Usefulness came from
those respondents who assessed their own level of process modeling expertise
as relatively low. While on average the three respondents with an intermediate
expertise assessed the usefulness of the declarative techniques as negative (-
0.208), the advanced modelers and the experts were positive (0.417 and 0.563,
respectively). Tukey’s HSD (Honestly Significant Difference) confirmed that the
self-assessed level of expertise was a significant factor to explain differences in
scores on Perceived Usefulness (p=0.042). In other words, the higher the level of
expertise, the more merit a participant saw in the declarative techniques. The
other factors had no noticeable effects on the scores.

5 Qualitative Evaluation

In this section, we present the qualitative evaluation of the workshop. In partic-
ular, we report on the results of the modeling assignment and of the discussion
with the professionals.

5.1 Modeling Assignment

As reported in Sect. 3, we split the ten professionals into two groups of five. One
group got an introduction to Declare and the other group to DCR Graphs. After
this introduction of about 30 minutes, each group was asked to work on two small
modeling assignments. One assignment was the document management system,
which we used to illustrate Declare and DCR Graphs in Sect. 2. The second
assignment was a hospital process of similar size and level of difficulty. The
professionals worked in groups of two and three on the two assignments. Each
assignment took less than 15 minutes, after which we presented and discussed
our solution. All four groups came up with a correct solution for each of the two
assignments.

The way we organized the assignment does not allow us to derive overly
strong conclusions. Still, we gained two interesting insights. First, the result
of the assignment shows that it is possible to teach declarative modeling to
practitioners. Although it was difficult for the professionals to get used to the
declarative way of modeling and to the graphical notations of the techniques,
they came up with correct models in reasonable time. Second, we were told
that the graphical notation of Declare and DCR Graphs are too academic and
for practitioners neither convincing nor intuitive. Moreover, also the informal



11

description, which we provided for each introduced constraint, did not help them
to easily identify the constraint they needed. These comments hold for both
techniques, DCR Graphs and Declare. This comes, indeed, not as a surprise
as both formalisms have an academic background. However, we expected DCR
Graphs to be more comprehensible and easier to use than Declare because DCR
Graphs only consist of five relations, whereas Declare requires to learn a larger
set of constraints.

5.2 Opportunities for a Declarative Approach

In the subsequent discussion with the professionals, we tried to figure out whether
they see opportunities for a declarative modeling approach. Clearly, such a ques-
tion is difficult to answer given the the short tutorials and only taking two assign-
ments. The participants did indicate that there are probably processes that can
be modeled most naturally using the imperative approach, while others would
fit better with the declarative approach. For example, a clearly well-structured
process of registering a newborn at a townhall can be modeled most naturally
in an imperative way whereas the document management system of Sect. 2 is
an example of a process that can be modeled most natural in a declarative way.
In addition, in almost all processes the professionals came across, there were
always at least parts or subprocesses where an imperative approach seems most
natural. So, the conclusion to this question is that a purely declarative approach
seems less attractive than a hybrid approach, which combines imperative and
declarative modeling aspects.

5.3 Requirements Concerning a Declarative/Hybrid Approach

In the previous section, we showed that practitioners see opportunities for a
hybrid approach. Next, we report on the practitioners’ requirements concerning
the specification, the constraints, the process, and tool support.

The consensus was that the efficient design of a declarative model (or of
the declarative part of a hybrid model) will require a declarative specification.
The reason is that it can be nontrivial to derive constraints from an impera-
tive specification. We received one comment that it might be difficult to get a
declarative specification at all, but we are not that pessimistic. Based on our
experience, it depends on how one formulates questions to domain experts; that
is, asking about the relationship between two activities (i.e., declarative) rather
than which steps can be performed in a certain state (i.e., imperative) will allow
one to come up with a declarative specification.

Other requirements concern the constraints. The involved professionals
brought forward that too many constraints may negatively influence the quality
of a declarative model. For example, many constraints affecting few activities
may result in an unreadable model. Furthermore, they assumed the complete-
ness of the constraints to be crucial, although that is similar to the completeness
of the branching conditions in an imperative model.



12

Looking at the process model or the specification to identify “candidate”
parts that may benefit from a declarative modeling approach, the profession-
als suggested to identify parts that have many dependencies (e.g., spaghetti-
like parts). Although such parts seem good candidates, it is unclear whether
a declarative way of modeling results in a better model. Another suggestion
was to identify those parts where much modeling freedom is; for example, a set
of concurrent activities (that preferably occur more than once) with only few
dependencies may result in a simpler declarative model than their imperative
counterpart.

Finally, also proper tool support is a hard requirement. Here, in particular,
the professionals saw deficits in the usability of the academic techniques when
used in a pen-and-paper fashion. We shall discuss tool support in Sect. 5.6 in
more detail.

5.4 Use Cases for a Declarative/Hybrid Approach

In this section, we list use cases for the declarative approach as identified during
the discussion.

Process evolution [21] was mentioned as the main use case by the involved
professionals—that is, manage processes along the various changes it encounters.
Having a set of constraints rather than a graph-based model seems to be bene-
ficial to visualize changes over time, on the one hand and to actually change a
process model, on the other hand. This is, in fact, one of the claimed advantages
of declarative modeling [3,15]. The “outside-in” approach of declarative models
allows for a higher level of abstraction than an imperative process model. There-
fore, it is often simpler to add or remove constraints than changing a BPMN
model, for instance.

The discussion also suggested that the use case for declarative models is tied
to model purpose. Process models serve different purposes—for example, as a
medium to communicate with stakeholders (i.e., communication model) or to
execute a process (i.e., executable model). Especially with respect to the com-
munication aspect, the professionals saw good opportunities for using declarative
techniques. Communication models are rather imprecise (e.g., exceptions may
be left out), and business analysts do not tend to stick to model conventions.
Instead, they may prefer to use short hands to illustrate behavior in a simpli-
fied way, for instance. Here, a hybrid approach looks promising as the business
analyst is provided with a lot of different ways to present the model. Again,
this follows from the higher level of abstraction of declarative models. In con-
trast, there was no common agreement on a declarative approach being useful
for specifying executable models. As an executable model contains all behavior,
a hybrid approach will only be beneficial if it allows for designing more readable
or simpler models.

Another interesting aspect mentioned was that a hybrid approach may result
in fewer errors in the model than using a purely imperative approach. This may
lead to shorter development cycles. We think that this is also a consequence
of the higher level of abstraction in declarative modeling. A modeler has to



13

identify the constraints rather than encode it in terms of control flow. However,
no experience report or empirical results exist that confirm this assumption.

5.5 Limitations of a Declarative/Hybrid Approach

In this section, we report on limitations of a declarative/hybrid approach con-
cerning the specification, the modeling paradigm, and the usability.

The main concern regarding the specification is that currently all specifica-
tions are imperative (e.g., “we first do this, then that”), and it seems to be very
difficult to produce a declarative model for such a specification. As discussed in
Sect. 5.3, we think that it is possible to receive declarative specifications.

There has been a paradigm shift in system development from monolithic
systems to component-based systems that are distributed within and across or-
ganizational boundaries. One prominent computing paradigm that implements
this trend is service-oriented computing (SOC) [19]. We received concerns that
in this setting declarative modeling techniques may be less applicable compared
to imperative techniques. The reason for this concern lies in the fact that cer-
tain constraints affect activities of an individual component, whereas other con-
straints affect activities of different components. Declarative techniques have,
however, been successfully applied in the service-oriented setting [14,15], and
it has been studied how a declarative cross-organizational workflow containing
global constraints can be projected to its individual localized components [11],
so we are convinced that this concern is unsubstantiated.

Another limitation concerns the usability of existing techniques and tools.
Current tool support is mainly academic by nature and seems, therefore, not
overly concerned with usability issues. Moreover, the declarative paradigm also
requires a different way of thinking, making it perhaps difficult for practition-
ers to understand declarative models. Here, more research is required to make
declarative techniques more comprehensible.

5.6 Requirements Concerning Tool Support

In this section, we report on feedback we received concerning Declare and DCR
Graphs and general requirements concerning tool support.

Several requirements on tools that were discussed deal with the specification
and visualization of constraints. As mentioned earlier in Sect. 5.1, the profes-
sionals mentioned that working with constraints was relatively difficult for them.
The graphical notations used in Declare and DCR Graphs were not always that
intuitive. Moreover, specifying constraints in plain English is not always help-
ful either, because it is often nontrivial to identify the differences between two
constraints. Therefore, the professionals proposed that constraints should be au-
tomatically derived from an informal textual specification. This problem has
indeed been investigated in the field of computer-aided verification, for instance.
Different approaches have been proposed, for example [7,5], but none of them
could solve the problem entirely.



14

A given set of constraints makes it necessary to check for conflicting con-
straints. This is a feature which has been implemented in most declarative mod-
eling tools [24], but has also been investigated in the context of compliance
rules [4], for instance. Another important feature is to generate a model from a
given set of constraints and to identify missing features. This problems is related
to scenario-based programming [10]. In case an implementation and recorded
event logs exist, process mining techniques to automatically derive missing con-
straints from the logs are required. First attempts at dealing with this topic
exist, see [13].

Besides modeling support, tools should preferably also provide operational
support. For example, event logs may be exploited to provide at runtime the best
possible next step. Such features are implemented in recommender systems.

Finally, usability plays an important role. Specification of constraints, their
graphical representation and the complete interplay between the tool and an end
user must be on an abstraction level that is adequate to the task at hand.

6 Research Agenda

In this section, we pick up the results from the discussion with the professionals
as presented in the previous section. We propose a research agenda for the devel-
opment of a hybrid modeling approach that combines imperative and declarative
techniques. The aim is thereby to point out necessary steps for developing and
actually using a hybrid technique rather than a complete research agenda.

Model guidelines In order to apply the hybrid approach, a modeler has to know
when to model in an imperative and when in a declarative way. In other words,
we need to identify modeling guidelines to guide modelers through the modeling
process. This requires rules for identifying imperative and declarative “candi-
date” parts on the level of an existing (imperative) process model (e.g., for
process redesign), on the level of event logs (e.g., for process discovery), and on
the level of (informal) specifications (e.g., for designing a new model).

Identify the hybrid technique Modeling in a hybrid way requires a well-suited
modeling language. It needs to be investigated whether we can combine existing
imperative and declarative languages or whether a new language has to be de-
signed. For instance, we can integrate a declarative part as a subprocess into an
imperative model (e.g., as a hierarchical transition in a Petri net or subprocess
task in BPMN) or we can allow declarative and imperative constructs to coexist
within a single subprocess. The modeling language must in any case support
hierarchy. In the latest version of CPN Tools [23], Westergaard integrated DCR
Graphs and Declare into Colored Petri nets. It turned out that defining the
semantics of such models is nontrivial.

Beside that, it needs to be settled which constraints are relevant for practise
and, thus, what the expressiveness of the declarative part of the language is.
Empirical research has shown [8,9] that certain declarative constructs may be



15

more difficult to understand. Thus, we think the language should not contain
too many declarative constructs, but this needs further empirical investigation.

Also, the graphical representation of hybrid models must be investigated. Dif-
ferent graphical notations exist, for example, compare DCR Graphs and Declare.
Insights from [16] may aid the design of a hybrid notation.

Analysis of hybrid models The novel modeling approach needs analysis tech-
niques including the verification of models, performance analysis, and property-
preserving abstraction and refinement techniques. Also, process mining tech-
niques [1] are needed—for example, checking the conformance of an event log
and a hybrid model and discovering a hybrid model from a given event log.

Tool support To show the applicability of the hybrid modeling technique, tool
support is a sine qua no. As reported in Sect. 5.6, research has to be performed
to simplify the use of declarative techniques, for example, finding a way to derive
constraints from informal specifications that can be used by business analysts
without requiring knowledge about temporal logics.

7 Conclusion

We reported on a workshop on declarative modeling given to professionals from
industry. The goal of this workshop was to gain insight into what practitioners
think about declarative modeling and what opportunities they see to use this
technique. Our quantitative evaluation showed that they were mostly positive
and open to this modeling paradigm. In particular, the techniques were rather
easy to learn. The qualitative evaluation showed that the practitioners did single
out the use of declarative techniques in the context of a hybrid approach, which
combines imperative and declarative modeling. Although our study is only based
on a small group of practitioners, we are convinced that practise can benefit from
such a hybrid modeling approach. To arrive at such an approach, we proposed
a research agenda for the development of a hybrid approach.

In our ongoing research, we plan to work on the development of model-
ing guidelines. We will investigate techniques to identify “candidate” parts of
a model for which a declarative way of modeling seems most natural. Also, we
plan to study event logs and process models and try to use the results to iden-
tify constraints that frequently occur. In a second branch of research, we will
investigate what a hybrid technique may look like, thereby using Declare, DCR
Graphs and CPN Tools as starting points for our studies.

References

1. Aalst, W.M.P.v.d.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer (2011)

2. Aalst, W.M.P.v.d.: Business process management: A comprehensive survey. ISRN
Software Engineering 2013 (2013)



16

3. Aalst, W.M.P.v.d., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing
between flexibility and support. Computer Science - R&D 23(2), 99–113 (2009)

4. Awad, A., Weidlich, M., Weske, M.: Consistency checking of compliance rules. In:
BIS 2010. LNBIP, vol. 47, pp. 106–118 (2010)

5. Cobleigh, R.L., Avrunin, G.S., Clarke, L.A.: User guidance for creating precise and
accessible property specifications. In: SIGSOFT FSE. pp. 208–218. ACM (2006)

6. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Q. 13(3), 319–340 (1989)

7. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE 1999. pp. 411–420. ACM (1999)

8. Fahland, D., Lübke, D., Mendling, J., Reijers, H.A., Weber, B., Weidlich, M.,
Zugal, S.: Declarative versus imperative process modeling languages: The issue of
understandability. In: BMMDS. LNBIP, vol. 29, pp. 353–366. Springer (2009)

9. Fahland, D., Mendling, J., Reijers, H.A., Weber, B., Weidlich, M., Zugal, S.: Declar-
ative versus imperative process modeling languages: The issue of maintainability.
In: BPM Workshops. LNBIP, vol. 43, pp. 477–488. Springer (2010)

10. Harel, D.: Come, let’s play - scenario-based programming using LSCs and the
play-engine. Springer (2003)

11. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Safe distribution of declarative pro-
cesses. In: SEFM 2011. pp. 237–252. Springer (2011)

12. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES 2010. EPTCS, vol. 69,
pp. 59–73 (2010)

13. Maggi, F.M., Bose, R.P.J.C., Aalst, W.M.P.v.d.: Efficient discovery of understand-
able declarative process models from event logs. In: CAiSE 2012. LNCS, vol. 7328,
pp. 270–285. Springer (2012)

14. Montali, M.: Specification and Verification of Declarative Open Interaction Models
- A Logic-Based Approach, LNBIP, vol. 56. Springer (2010)

15. Montali, M., Pesic, M., Aalst, W.M.P.v.d., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographiess. TWEB 4(1)
(2010)

16. Moody, D.: The physics of notations: toward a scientific basis for constructing
visual notations in software engineering. Software Engineering, IEEE Transactions
on 35(6), 756–779 (2009)

17. Moody, D.L.: The method evaluation model: a theoretical model for validating
information systems design methods. In: ECIS 2003. pp. 1327–1336 (2003)

18. Nunnally, J.: C.(1978). Psychometric theory. New York: McGraw-Hill (1978)
19. Papazoglou, M.P.: Web Services - Principles and Technology. Prentice Hall (2008)
20. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Impera-

tive versus declarative process modeling languages: An empirical investigation. In:
BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 383–394. Springer (2012)

21. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems. Springer (2012)

22. Weber, B., Reijers, H.A., Zugal, S., Wild, W.: The declarative approach to business
process execution: An empirical test. In: CAiSE 2009. LNCS, vol. 5565, pp. 470–
485. Springer (2009)

23. Westergaard, M.: CPN Tools 4: Multi-formalism and extensibility. In: Petri Nets
2013. LNCS, Springer (2013), accepted for publication

24. Westergaard, M., Maggi, F.M.: Declare: A tool suite for declarative workflow mod-
eling and enactment. In: BPM (Demos) 2011. CEUR Workshop Proceedings, vol.
820. CEUR-WS.org (2011)


	Declarative Modeling—An Academic Dream or the Future for BPM? 

