28 research outputs found

    Metabolizable energy requirement for maintenance estimated by regression analysis of body weight gain or metabolizable energy intake in growing pigs

    Get PDF
    Objective: Feed energy required for pigs is first prioritized to meet maintenance costs. Additional energy intake in excess of the energy requirement for maintenance is retained as protein and fat in the body, leading to weight gain. The objective of this study was to estimate the metabolizable energy requirements for maintenance (MEm) by regressing body weight (BW) gain against metabolizable energy intake (MEI) in growing pigs.Methods: Thirty-six growing pigs (26.3 +/- 1.7 kg) were allotted to 1 of 6 treatments with 6 replicates per treatment in a randomized complete block design. Treatments were 6 feeding levels which were calculated as 50%, 60%, 70%, 80%, 90%, or 100% of the estimated ad libitum MEI (2,400 kJ/kg BW0.60 d). All pigs were individually housed in metabolism crates for 30 d and weighed every 5 d. Moreover, each pig from each treatment was placed in the open-circuit respiration chambers to measure heat production (HP) and energy retained as protein (REp) and fat (REf) every 5 d. Serum biochemical parameters of pigs were analyzed at the end of the experiment.Results: The average daily gain (ADG) and HP as well as the REp and REf linearly increased with increasing feed intake (p< 0.010). beta-hydroxybutyrate concentration of serum tended to increase with increasing feed intake (p = 0.080). The regression equations of MEI on ADG were MEI, kJ/kg BW0.60 d = 1.88xADG, g/d+782 (R-2 = 0.86) and MEm was estimated at 782 kJ/kg BW0.60 d. Protein retention of growing pigs would be positive while REf would be negative at this feeding level via regression equations of REp and REf on MEI.Conclusion: The MEm was estimated at 782 kJ/kg BW0.60 d in current experiment. Furthermore, growing pigs will deposit protein and oxidize fat if provided feed at the estimated maintenance level

    Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package

    Get PDF
    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube

    The Efficiency of the Chinese Prefabricated Building Industry and Its Influencing Factors: An Empirical Study

    No full text
    China is a world leader in capital construction. In the construction field, the shift toward prefabricated construction has become an important path for industrial transformation. This paper refers to the development of the prefabricated building industry in China, and uses input and output perspectives to examine its efficiency. It builds a data envelopment analysis model to evaluate the efficiency of the prefabricated building industry in China at both the micro and macro levels, and uses the Tobit model to empirically analyze the factors that influence this industry’s efficiency. It finds that the country’s prefabricated building industry has a moderate micro-level efficiency. This means that it is necessary to further rationalize industrial planning; strengthen technological innovation; and improve standardization, mechanization, and automation levels. At the macro level, China’s prefabricated buildings have a low industrial efficiency and remain at the initial stage of industrial development. A series of problems, such as small industrial scale and unsound policies, are restricting the industry’s rapid and efficient development. We propose several countermeasures and suggestions for the (micro- and macro-level) sustainable development of the prefabricated building industry in China, and anticipate that this will have implications for this industry’s worldwide development

    A Comparative Study of SIMULINK 1D Dynamic Model and FLUENT 3D Model for PEMFC Faults Diagnosis

    No full text
    According to the different research platforms of PEMFC (Proton Exchange Membrane Fuel Cell) faults diagnosis, experimental diagnostics and mathematical modeling are employed in the characterization and determination of fuel cell performance. The methods based on mathematical modeling are promised on establishing a suitable model, which is capable to reflect the physical properties of actual fuel cell stack as accurate as possible. Further, a scientific and reasonable PEMFC model is also indispensable for the system performance analysis, design, control, and optimization. Generally, PEMFC auxiliary system adopts a lumped parameter model to provide the boundary conditions of stack, such as current demand, gas flow rate, pressure, and temperature. As PEMFC stack needs to be embedded particular faults in a specific time and space position, it necessitates adopting a distributed parameter model in one dimensional (1D), two dimensional (2D) or three dimensional (3D). In this paper, a comparative analysis is carried out between a diagnostic one dimensional dynamic model by MATLAB/SIMULINK and a diagnostic three dimensional distributed parameter model based on FLUENT. Also, the diagnostic results in specific faults are studied

    Experimental Investigation on the Seismic Behavior of Newly-Developed Precast Reinforced Concrete Block Masonry Shear Walls

    No full text
    Typically, a special type of concrete block with cleaning holes is used in the bottom layer of traditional reinforced masonry shear walls (RMSWs) for mortar cleaning and vertical rebar connection, which results in reduced integrity and weakened structural behavior. In this paper, a precast construction technology was introduced to overcome these shortcomings. The cleaning-hole blocks were eliminated in the newly-developed precast RMSWs. Quasi-static tests on two traditional and two precast fully grouted RMSWs were conducted. The results showed that the flexural capacity of precast walls exhibited about a 10% increase when compared to traditional RMSWs under the same axial compression. Precast RMSWs that failed in flexural mode showed favorable deformation capacity and the displacement ductility value corresponding to 15% strength degradation reached 4.9. The wall stiffness degraded rapidly to 50% of the initial stiffness, K0, at 0.2% drift and, at 0.5% drift, the corresponding stiffness decreased to about 21% K0 at a more gradual rate. Furthermore, precast RMSWs exhibited significant energy dissipation capacity. The experiment suggests that precast RMSWs have a satisfactory seismic performance

    Characteristics of Gravelly Granite Residual Soil in Bored Pile Design: An In Situ Test in Shenzhen

    No full text
    Granite residual soil is widely distributed in south China and is treated as a special soil. Its design parameters in rotary drilling bored piles are a matter of debate due to lack of in-situ pile load tests. Back-analysis of test piles is a reliable means of studying the geotechnical capacity of granite residual soil for pile design. In this study, a series of in situ tests was conducted comprising six full-scale instrumented test piles in gravelly granite residual soil in Shenzhen to consider the effects of different construction methods. The six piles were constructed with three different rotary drilling methods. Two commonly used design methods were investigated in the back-analysis: the SPT and effective stress methods. The results of the loading tests and strain gauges were used to obtain the back-analyzed parameters of the ultimate shaft resistance and ultimate base resistance for gravelly granite residual soil with these two design methods

    Experimental and Numerical Study on the Seismic Performance of Prefabricated Reinforced Masonry Shear Walls

    No full text
    The seismic performance of prefabricated reinforced concrete block masonry shear walls (PRMSWs) was studied. Five PRMSWs were tested under cyclic loading to evaluate the effect of the axial compression ratio and the distribution of the vertical rebar on the inelastic behavior. Based on the experimental results, the lateral load capacity, failure mode, lateral drift, ductility, stiffness degradation, energy dissipation, and the seismic performance stability of the specimens were analyzed. The finite element analysis of the specimens was conducted with ABAQUS, which agreed quite well with the laboratory findings. Relevant results showed that PRMSW exhibited favorable ductility and energy dissipation. The increase of the compression ratio led to stiffer, but more brittle, inelastic behavior of the specimens that had higher flexural strength. The shear walls that had concentrated vertical rebar at the sides exhibited relatively higher load capacity and less ductility compared to the walls that had evenly distributed rebar. The inelastic lateral drift limit of the PRMSW could be assigned 1/120. The equivalent viscous damping ratio of the PRMSW was 9&ndash;13% at ultimate load. These results provide a technical basis for the design and application of the PRMSW structures
    corecore