16 research outputs found

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Estimating the ultimate bound for the generalized quadratic autonomous chaotic systems

    No full text
    By using the optimization idea, this paper introduces a universal approach to estimate the ultimate bounds of the generalized quadratic autonomous chaotic systems (GQACS). Based on the proposed technique, a sufficient condition is then given to estimate the ultimate bounds of the GQACS. To validate the presented sufficient condition, one further estimates the ultimate bounds of a generalized Lorenz system and the hyperchaotic Lorenz-Stenflo system. It should be especially pointed out that our results include several well-known ultimate bound estimations as our special cases. Finally, several typical numerical examples are also given to visualize our theoretical results

    Ultimate bound estimation of a class of high dimensional quadratic autonomous dynamical systems

    No full text
    This paper aims to propose a unified approach for the ultimate bound estimation of a class of High Dimensional Quadratic Autonomous Dynamical Systems (HDQADS). Using the proposed method and the optimization idea, a sufficient condition is then given for estimating the ultimate bounds of a class of HDQADS. To validate the above sufficient condition, this paper further investigates the ultimate bound estimation of a hyperchaotic system, a 6D and a 9D chaotic system, separately. Moreover, the ultimate bounds for a general Lorenz system, a low-order atmospheric circulation model, and a new 3D chaotic system are also discussed in detail. In particular, it should be pointed out that a unified and accurate ultimate bound estimation is attained for the generalized Lorenz system and it includes several well-known results as its special cases. Some numerical simulations are also given to verify and visualize the corresponding theoretical results

    L(2,1)-Edge-Labelings of the Edge-Path-Replacement of a Graph

    No full text

    Genome-Wide Identification of <i>NDPK</i> Family Genes and Expression Analysis under Abiotic Stress in <i>Brassica napus</i>

    No full text
    The NDPK gene family is an important group of genes in plants, playing a crucial role in regulating energy metabolism, growth, and differentiation, cell signal transduction, and response to abiotic stress. However, our understanding of the NDPK gene family in Brassica napus L. remains limited. This paper systematically analyzes the NDPK gene family in B. napus, particularly focusing on the evolutionary differences within the species. In this study, sixteen, nine, and eight NDPK genes were identified in B. napus and its diploid ancestors, respectively. These genes are not only homologous but also highly similar in their chromosomal locations. Phylogenetic analysis showed that the identified NDPK proteins were divided into four clades, each containing unique motif sequences, with most NDPKs experiencing a loss of introns/exons during evolution. Collinearity analysis revealed that the NDPK genes underwent whole-genome duplication (WGD) events, resulting in duplicate copies, and most of these duplicate genes were subjected to purifying selection. Cis-acting element analysis identified in the promoters of most NDPK genes elements related to a light response, methyl jasmonate response, and abscisic acid response, especially with an increased number of abscisic acid response elements in B. napus. RNA-Seq results indicated that NDPK genes in B. napus exhibited different expression patterns across various tissues. Further analysis through qRT-PCR revealed that BnNDPK genes responded significantly to stress conditions such as salt, drought, and methyl jasmonate. This study enhances our understanding of the NDPK gene family in B. napus, providing a preliminary theoretical basis for the functional study of NDPK genes and offering some references for further revealing the phenomenon of polyploidization in plants
    corecore