876 research outputs found

    Far-Field Optical Microscopy Based on Stimulated Emission Depletion

    Get PDF
    Conventional lens-based (far-field) fluorescence microscopy is a widely used imaging technique with spatial resolution up to 150–350 nm. However, this technology cannot discern very small structural features, because the spatial resolution is limited by diffraction to about half of the wavelength of light (λ/2,λ is the wavelength of light). Hence, most of the developments in microscopy aim at improving resolution. In the past decades, stimulated emission depletion (STED) microscopy has been developed to bypass the diffraction limit for the application in biological imaging with resolution approaching the nanoscale. The basic principle of STED microscopy is to employ a doughnut-shape laser called the depletion laser which inhibits fluorescence emission and improves the resolution of the focal plane by depleting the peripheral fluorescence. Thereby, STED microscopy avoids the diffraction barrier and improves the spatial resolution. STED microscopy has been widely applied to address many problems in biology with both continuous wave and pulsed wave lasers. Various fluorescent nanoparticles, therefore, are attractive for far-field super-resolution microscopy. During the past decades, fluorescent nanoparticles have been used as a fluorescent label, fluorescent probe or marker for super-resolution imaging in vitro andvivo. In our study, STED microscopy is one of the breakthrough technologies that belongs to far-field optical microscopy and can reach the nanoscale spatial resolution. We demonstrate a far-field optical microscopy based on pulsed-wave lasers with the violet (405 nm) and green lasers (532 nm) for excitation and STED, respectively. Firstly,fluorescent dye - Coumarin 102 is applied to verify the stability and reliability of the STED microscopy. Then, one suitable nanoparticle is selected from three different kinds of nanoparticles (Silica Nanoparticles-NFv465, flouro-Max blue aqueous fluorescent nanoparticles, light yellow nanoparticles) based on their absorption and depletion spectrum and depletion efficiency under different depletion power. Light yellow fluorescent nanoparticles (LYs) are selected for characterizing the spatial resolution of the STED microscopy. Finally, the laser beams of the STED microscopy are utilized to scan along a glass slide, which is coated with the LYs. A two-dimensional image of the LYs pattern is established and compared with the confocal imaging, indicating that a spatial resolution (approximately 76.02 nm) has been obtained in the STED imaging so far. Even though the resolution of STED microscopy with pulsed-laser has the room to be improved, the present work shows that our lab has successfully built up the STED microscopy with the pulsed-laser

    Proteins Involved in Otoconia Formation and Maintenance

    Get PDF

    Branched-Chain Amino Acid Negatively Regulates KLF15 Expression via PI3K-AKT Pathway.

    Get PDF
    Recent studies have linked branched-chain amino acid (BCAA) with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15) is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively controlled by BCAA.Interestingly, BCAA starvation induced PI3K-AKT signaling. KLF15 induction by BCAA starvation was blocked by PI3K and AKT inhibitors, indicating the activation of PI3K-AKT signaling pathway mediated the KLF15 induction. BCAA regulated KLF15 expression at transcriptional level but not post-transcriptional level. However, BCAA starvation failed to increase the KLF15-promoter-driven luciferase expression, suggesting KLF15 promoter activity was not directly controlled by BCAA. Finally, fasting reduced BCAA abundance in mice and KLF15 expression was dramatically induced in muscle and white adipose tissue, but not in liver. Together, these data demonstrated BCAA negatively regulated KLF15 expression, suggesting a novel molecular mechanism underlying BCAA's multiple functions in metabolic regulation

    Correlation between actin-binding protein TRIOBP and susceptibility to noise-induced hearing loss

    Get PDF

    Large Amplitude Settlements of Oil Storage Tanks

    Get PDF
    The measured profile of large-amplitude settlements of an oil storage tank was analyzed by the finite element method. Both geometric and material nonlinearities were included in the finite element analysis. Stresses and deformations, based on available qualification criteria, were examined. The results showed that most criteria in use today for the tank shell and the bottom plate are overly conservative. The calculated response of the existing operational tank under the measured large-amplitude settlements confirmed such an observation
    • …
    corecore