1,958 research outputs found

    Invariant imbedding, method of characteristics, and parameter estimation

    Get PDF
    AbstractParameter estimation in a physical system from observed data is carried out by a method which combines invariant imbedding formalism and the method of characteristics. This avoids the necessity of making use of an initial guess for the parameter necessary if one adopts quasilinearization techniques. Numerical results for a simple one parameter system is presented

    Application of invariant imbedding to the estimation of process duration

    Get PDF
    AbstractThis work deals with the application of invariant imbedding to solve a particularly important design problem, namely, the duration of the process. A numerical example is used to illustrate the approach. The advantage of this approach is its straightforward nature and uses only the usual design data. It avoids any iterations and thus no convergence problems need to be considered

    Impurity state in Haldane gap for S=1 Heisenberg antiferromagnetic chain with bond doping

    Full text link
    Using a new impurity density matrix renormalization group scheme, we establish a reliable picture of how the low lying energy levels of a S=1S=1 Heisenberg antiferromagnetic chain change {\it quantitatively} upon bond doping. A new impurity state gradually occurs in the Haldane gap as J′<JJ' < J, while it appears only if J′/J>γcJ'/J>\gamma_c with 1/γc=0.7081/\gamma_c=0.708 as J′>JJ'>J. The system is non-perturbative as 1≤J′/J≤γc1\leq J'/J\leq\gamma_c. This explains the appearance of a new state in the Haldane gap in a recent experiment on Y2−x_{2-x}Cax_xBaNiO5_5 [J.F. DiTusa, et al., Phys. Rev. Lett. 73 1857(1994)].Comment: 4 pages of uuencoded gzip'd postscrip

    Finite Size Scaling for Low Energy Excitations in Integer Heisenberg Spin Chains

    Full text link
    In this paper we study the finite size scaling for low energy excitations of S=1S=1 and S=2S=2 Heisenberg chains, using the density matrix renormalization group technique. A crossover from 1/L1/L behavior (with LL as the chain length) for medium chain length to 1/L21/L^2 scaling for long chain length is found for excitations in the continuum band as the length of the open chain increases. Topological spin S=1/2S=1/2 excitations are shown to give rise to the two lowest energy states for both open and periodic S=1S=1 chains. In periodic chains these two excitations are ``confined'' next to each other, while for open chains they are two free edge 1/2 spins. The finite size scaling of the two lowest energy excitations of open S=2S=2 chains is determined by coupling the two free edge S=1S=1 spins. The gap and correlation length for S=2S=2 open Heisenberg chains are shown to be 0.082 (in units of the exchange JJ) and 47, respectively.Comment: 4 pages (two column), PS file, to be appear as a PRB Brief Repor

    Multiple plasma diagnosis from a 5 chord high energy resolution x-ray spectrometer array

    Get PDF

    Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    Get PDF
    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeteris applied for reconstruction of the tracks and energies of individual high energy protons. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to handle an effective proton frequency of 1 MHz by using 500 concurrent proton tracks in each readout frame, which is at the high end range of present similar prototypes. A future further optimized prototype will enable a high-speed and more accurate determination of the ranges of individual protons in a therapeutic beam.Comment: 21 pages, 8 figure

    Photospheric Magnetic Field: Relationship Between North-South Asymmetry and Flux Imbalance

    Full text link
    Photospheric magnetic fields were studied using the Kitt Peak synoptic maps for 1976-2003. Only strong magnetic fields (B>100 G) of the equatorial region were taken into account. The north-south asymmetry of the magnetic fluxes was considered as well as the imbalance between positive and negative fluxes. The north-south asymmetry displays a regular alternation of the dominant hemisphere during the solar cycle: the northern hemisphere dominated in the ascending phase, the southern one in the descending phase during Solar Cycles 21-23. The sign of the imbalance did not change during the 11 years from one polar-field reversal to the next and always coincided with the sign of the Sun's polar magnetic field in the northern hemisphere. The dominant sign of leading sunspots in one of the hemispheres determines the sign of the magnetic-flux imbalance. The sign of the north-south asymmetry of the magnetic fluxes and the sign of the imbalance of the positive and the negative fluxes are related to the quarter of the 22-year magnetic cycle where the magnetic configuration of the Sun remains constant (from the minimum where the sunspot sign changes according to Hale's law to the magnetic-field reversal and from the reversal to the minimum). The sign of the north-south asymmetry for the time interval considered was determined by the phase of the 11-year cycle (before or after the reversal); the sign of the imbalance of the positive and the negative fluxes depends on both the phase of the 11-year cycle and on the parity of the solar cycle. The results obtained demonstrate the connection of the magnetic fields in active regions with the Sun's polar magnetic field in the northern hemisphere.Comment: 24 pages, 12 figures, 2 table
    • …
    corecore