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Abstract

X-ray spectra from Alcator C-Mod plasmas have been collected using a high

wavelength resolution five spectrometer array during a wide range of operating

conditions, providing a large variety of diagnostic information. Each independently

scannable von Hamos type spectrometer has a wavelength range of 2.6 to 4.1 A, and

the complete Rydberg series of He- and Hy-like argon have been observed. Spectra

of A n = 1 ground state transitions and satellites taken along different chords

have been simulated using the results from a collisional-radiative model and the

MIST transport code. Line ratios are used to infer the electron temperature profile

and good agreement is found with ECE profiles. Line intensities have been used

to obtain absolute argon densities and argon recycling coefficients, and up-down

asymmetric density profiles are sometimes observed. The widths of the strongest

lines have been used to deduce ion temperature profiles, and wavelength shifts have

been used to determine toroidal rotation velocities. Transitions from around n =

9 to the ground state are populated by charge-exchange in the outer regions of the

plasma and these line intensities have been used to measure neutral hydrogen density

profiles. Spectra from helium-like scandium have been obtained during injection

experiments and time histories and line intensities have been used to determine

impurity transport coefficients. A n > 2 ground state transitions in molybdenum

charge states around neon-like have been observed and used to measure the absolute

molybdenum density, and to test atomic structure calculations.
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Introduction

In future reactor grade devices, diagnostic access will be severely limited, so

efficient use of the space around the machines will be necessary. Care must then be

taken in the selection of the essential diagnostics to be used. X-ray emission from

high temperature plasmas provides a wealth of information, from the parameter

dependences of line intensities and from line shapes. In particular, line widths can

be used to measure the ion temperature, line shifts to obtain rotation velocities, line

ratios to determine the electron temperature and line intensities to measure the neu-

tral hydrogen density, impurity densities and impurity transport coefficients. The

x-ray spectrometer array described here provides these multiple diagnostic capabil-

ities. To take advantage of all of these diagnostic possibilities, it is most convenient

to use x-ray emission from helium- and hydrogenlike charge states which exist in the

core of the plasma. The elements appropriate for the electron temperature range

of the device may come from intrinsic or injected impurities in levels which do not

compromise plasma performance.

Experiment Description

Alcator C-Mod' is a compact, high magnetic field tokamak with all molybde-

num plasma facing components, and the capability of 4MW of ICRF heating2 . The

parameter ranges achieved for the device to date are 2.5 T < BT 5 6.5 T, .3 MA

< Ip < 1.2 MA, .2 x 10'4 /cm 3 < n, 2.5 x 1014 /cm 3 , 1.0 < r, < 1.8 and .7 keV

< TeO ~ Tio < 4.5 keV. Among the many diagnostics is a five chord, high energy

resolution x-ray spectrometer array3',4 . Each spectrometer has a resolving power of

4000, a 2 cm spatial resolution and a luminosity function of 7 x 10-3 m 2sr. Each

spectrometer can be scanned vertically (with coverage out to the last closed flux

surface), and scanned in wavelength between 2.6 and 4.1 A, with 120 mA spanned

at a time. This allows for observation of the complete rydberg series in hydrogen-

and heliumlike argon. Argon is routinely puffed into C-Mod plasmas through an

absolutely calibrated piezoelectric valve, at levels which do not compromise plasma
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performance. Metallic impurities can also be injected with a laser blow-off systemS,

for impurity transport and atomic physics studies.

Plasma Diagnosis

One of the raisons d 'tre of this diagnostic is to measure the ion temperature

and profile under a wide variety of plasma conditions, from the doppler broadening

of impurity x-ray lines. The resonance transition, w (1s 2 IS 0 - 1s2p 'P 1 ) in Ar16 +

at 3.9492 A is usually used since it is adequately intense over a range of electron

temperatures from 400 to 2500 eV, and due to the relatively low atomic mass (40

AMU), has a large doppler width. For higher temperatures, Lya1 (1s 1S1 - 2p 2 p )

in Ar 17+ at 3.7311 A is appropriate. In the edge regions of the plasma below 400

eV, the forbidden line, z (1s 2 'So - 1s2s 3 S 1) in Arl6 + is used since it is most intense

from population by radiative recombination 6 . An example of the time history of

the central ion temperature from x-ray doppler measurments is shown in Fig.1, and

compares favorably with the results from the neutron counter 7 . This particular

discharge had ICRF and lithium pellet injection. During the PEP mode8 at .83 sec,

the ion temperature profile became very peaked, going from a HWHM of 9.2 cm at

.7 sec, to 6.7 cm at .83 sec. While the time resolution of the x-ray temperature is

not as good as from the neutrons, the x-ray measurement does not depend upon

an absolute intensity calibration, a priori knowledge of the ion temperature pro-

file and deuteron density, and yields ion temperatures in hydrogen plasmas. The

major source of uncertainty in the x-ray measurement is the contribution of the

instrumental width to the overall doppler width of the line of interest.

From the position (wavelength) of the x-ray lines, the impurity rotation velocity

may be determined. For this measurement the Ar17+ Ly, 1 is used, which has the

advantage that there is a nearby potassium line9 which can be used for a wavelength

calibration. The maximum toroidal rotation velocities measured so far in ohmic

discharges are - 6 x 106 cm/sec, in the same direction as the electrons, at the

beginning of the discharge, when the loop voltage is highest.
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Another diagnostic application of this x-ray spectrometer system is the mea-

surement of the electron temperature from line ratios. Advantage can be taken of

the different temperature dependences of individual line population mechanisms, or

in the temperature dependence of ionization state balance10 . The brightness ratio

of the is 'Si - 3p 2 Pa transition in Ar17+ (3150.24 mA) to the 1s 2 1So - 1s5p 'P 12 2

transition in Ar16 + (3128.47 mA) is sensitive to the electron temperature" in the

range from 1 to 2.5 keV, mainly due to differences in the ionization rates. Shown

in Fig.2 by the solid curve is the calculated brightness ratio of these two lines as a

function of electron temperature (actually vice versa), where coronal equilibrium12

is assumed, and a typical electron temperature profile shape' 3 is used. The assump-

tion of coronal equilibrium is well taken in the plasma center6 . Shown in Fig.2 by the

asterisks are the measured central chord brightness ratios as a function of electron

temperature measured by the electron cyclotron grating polychromator14, and the

agreement is very good. It's also possible to determine the electron temperature

from line ratios originating from the same ionization state, from lines populated

by collisional excitation and dielectronic recombination", 4 (w and the satellite k),

which has the advantage of eliminating the coronal equilibrium assumption.

High n transitions in Ari6 + can be used to determine the neutral hydrogen den-

sity in the plasma16. The is 2 'So - 1s9p 1P1 and 1s 2 'So - 1siOp 'P, transitions have

large rate coefficients for population by charge exchange recombination17. Shown

in Fig.3 are spectra taken in the vicinity of these lines. The solid line shows the

spectrum from a line of sight through the bottom of the machine (r/a = .7), and

the enhancement of the n=9 and n=10 is apparent. The very high n lines around

n=20 are also visible, from charge exchange with excited neutral hydrogen16. The

spectrum shown by the dotted lines is from the same flux surface (r/a = .7), but

from the top of the machine, and there is no evidence for enhancement from charge

exchange recombination. This indicates that the neutral hydrogen density is nearly

a factor of 10 higher in the bottom of the machine than in the top. For this par-

ticular discharge, the X-point was located in the bottom, and in these discharges,

there is an enhancement of the Ha emission 18 and C2+ emission19 in the bottom of
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the machine.

From the absolute line brightnesses, impurity densities and profiles may be

determined20 . Since the piezoelectric valve used to inject the argon is absolutely

calibrated, impurity screening or penetration efficiencies may be determined. The

penetration efficiency is defined here to be the ratio of the the number of atoms in

the plasma core to the number of atoms injected. The penetration of argon is shown

in Fig.4 as a function of electron density for limited and diverted plasmas. For both

configurations, the penetration is reduced at higher electron densities 225 ' 20 , which

is consistent with observations of intrinsic impurity levels. The penetration is also

reduced when going to diverted operation, demonstrating one advantage over the

limiter configuration. In any case, the penetration of impurities into Alcator C-Mod

is small, in most instances less than 3%.

In addition to the previously mentioned diagnostic capabilities, the x-ray spec-

trometer system can also provide information relating to plasma and atomic physics

studies. In particular, asymmetries in up-down line brightness profiles can pro-

vide information on impurity drifts, while studies of x-ray spectra from neonlike

molybdenum 23 have been used to benchmark atomic structure calculations.

Conclusions

The multiple diagnostic capabilities of the x-ray spectrometer array on Alcator

C-Mod have been demonstrated. This one diagnostic system is able to provide

Ti(r,t), Te(r,t), Vr,,(t), no(r), ni(r,t), in addition to impurity transport coefficients

and information pertaining to atomic and plasma physics studies.
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Figure Captions

Fig. 1 Time histories of the ion temperature from x-rays (asterisks) and neutrons

(solid curve). There was a lithium pellet injection at .76 s (vertical line) and ICRF

from .775 to 1.1 s, which peaked at 2.5 MW.

Fig. 2 The electron temperature versus calculated brightness ratio (Ar17+ ls-3p

to Arl6 + 1s 2-1s5p) is shown by the solid curve, and the measured electron temper-

atures versus measured line ratios are shown by asterisks.

Fig. 3 High n x-ray spectra from the bottom (solid curve) and top (dotted lines)

of the machine for a lower point X-point discharge.

Fig. 4 Argon penetration (argon atoms in the plasma core/argon atoms in-

jected) as a function of electron density for limited (dots) and diverted (asterisks)

discharges.

8



4000

3000

2000

1000

0
0.4

- Neutrons

* X-ray

0.

I * .~FT,~~77T~nL. . I

0.6 0.8

time (s)

-'gure 1

1.0 1.2

9

Q)

E

-2

I

I I I I I I



- - - - ' . . . . I *

I I I I I
0.5
0.5

Ratio

Figure 2

10

' 1 A2500

2000

U.)

1500CL

-

1000

500
0.0

I I ~I U I

1.0 1.5
. . . .



20

''15
0
U

~0- o
0o

U)
U)
Q)

c
-C

cD 5

0
3020 3040 3060 3080 3100

Wavelength (mA)

Figure 3

11

- - - - I I a I

18-30 - Z=-23.0 cm-

.Z= 20.4 cm -
10

9-

6

8

119

I I I I I I I I, I I.

- -I



I I I4 lull.

Ill,,..

C:

0
-+-j

0

0

c

0>

0

X

0

Average
1
Electron

2
Density

3
(

4
10 20 /m 3 )

Figure 4

12

*

Diverted

Limited

'


