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Grand-potential based multiphase-field model is extended to include surface diffusion. Diffusion is elevated
in the interface through a scalar degenerate term. In contrast to the classical Cahn-Hilliard-based formulations,
the present model circumvents the related difficulties in restricting diffusion solely to the interface by combining
two second-order equations, an Allen-Cahn-type equation for the phase field supplemented with an obstacle-
type potential and a conservative diffusion equation for the chemical potential or composition evolution. The
sharp interface limiting behavior of the model is deduced by means of asymptotic analysis. A combination of
surface diffusion and finite attachment kinetics is retrieved as the governing law. Infinite attachment kinetics
can be achieved through a minor modification of the model, and with a slight change in the interpretation, the
same model handles the cases of pure substances and alloys. Relations between model parameters and physical
properties are obtained which allow one to quantitatively interpret simulation results. An extensive study of
thermal grooving is conducted to validate the model based on existing theories. The results show good agreement
with the theoretical sharp-interface solutions. The obviation of fourth-order derivatives and the usage of the
obstacle potential make the model computationally cost-effective.
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I. INTRODUCTION

The microstructure of a material reflects the morphological
configuration of the constituent phases and grains. Effec-
tive material properties are directly related to the underlying
microstructure. Therefore, naturally, to understand and con-
trol the behavior of the material under various conditions,
the microstructural evolution is extensively analyzed. During
the evolution, numerous physical processes may be coupled
inherently. In addition to the diffusion of the involved chemi-
cal species, the microstructural transformation is prominently
driven by interfacial energy and mechanical stresses and
strains. To untangle the inherent complexities in the temporal
evolution of a microstructure, theoretical treatments are em-
ployed. Phase-field modeling is one such numerical technique,
which is widely gaining ground for its ability to describe a
thermodynamically consistent microstructural evolution.

A. Phase-field framework

The distribution of phases and grains in a microstructure
typically exhibits complex geometries and topologies. More
precisely, when the microstructure evolves with time, the
migration of interfaces may lead to a coalescence and/or a
breakup of particles, and interfaces and junctions may form
or disappear. To explicitly track all possible events, while the

microstructure is altered, turns into an arduous task. Phase-
field approaches [1–4] circumvent these difficulties by intro-
ducing a scalar and dimensionless variable, the phase field
φ(x, t ), which exhibits spatiotemporal dependency. Through a
spatial variation of the phase field, the domain is decomposed
into different bulk regions and interfaces. Instead of explicitly
implementing an equation of motion for the interface, the
temporal behavior is delineated implicitly through a partial
differential equation for the phase-field variable. The tracking
of the interface is obviated, because all possible morpholog-
ical transformations are properly described by solving the
imposed equation. However, due to the implicit treatment,
additional effort lies in demonstrating the ability to recover
the conventional (and explicit) sharp interface solutions and
physical laws.

The phase field, defined in this form, can be interpreted
as the local volume fraction of the corresponding phase. The
interface thus corresponds to the region of a rapidly varying
phase field. Therefore, the sharp interface in phase-field mod-
els is replaced by a diffuse region of well-defined thickness.
The phase field φ(x, t ) is usually nonconserved, i.e., one phase
may freely transform into the other, as a result of a driving
force acting on the interface between them. Such a process is
commonly incorporated, following Allen and Cahn [5], where
the evolution of the phase field leads to a reduction in the free
energy of the system. These sorts of evolution equations are
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therefore termed Allen-Cahn equations. Following Cahn and
Hilliard [6], the phase field is alternatively interpreted as a
composition (i.e., mole fraction of one of the species), written
as c(x, t ), which is a conserved quantity, and consequently
augmented with a diffusion equation. Models following this
approach are therefore termed Cahn-Hilliard models.

Both approaches start with a formulation of the overall free
energy F of the system, in terms of either φ or c. The capillar-
ity effect is naturally included in the models through a gradient
and a potential term, which balance each other to form a
well-defined interfacial profile. In an Allen-Cahn model, the
motion of the interface is proportional to the variation of
the free energy, i.e., φ̇ ∝ δF/δφ, while in a Cahn-Hilliard
model, spatial differences lead to a flux in the free energy
variation, whose divergence governs the evolution, such that
ċ ∝ ∇2δF/δc, where ∇2 is the Laplacian. Numerous prob-
lems require a coupling of both notions in a single model,
such as solidification, where diffusion and phase transforma-
tion happen simultaneously, or sintering, where concomitant
grain growth and coarsening takes place. Questions arise as
to whether c or φ should be used to include interfacial en-
ergy into the functional or both of them. Additional questions
appear, concerning the quantitative treatment of the bulk prop-
erties and the extension of the model for a multicomponent
setup. Since starting from initial ideas [7–9], these questions
have been the scope of numerous works, [10–13], in which
tremendous progress has been made. One of the promising
candidates is the grand potential model [14,15], extended in
this work. Apart from the coupling of diffusion and phase
transformations, a scalar phase field can be used only to dis-
tinguish two distinct phases. The phase-field technique had to
be extended to delineate systems comprising more than two
phases (e.g., polycrystalline materials). In such multiphase-
field models [16–18], the scalar variable is replaced by a
vector quantity, φ = {φα, φβ, . . . , φN }, to efficiently describe
the contribution of each of the N multiple phases. The bulk is
characterized by a constant value of the phase field (|∇φα| =
0, ∀α ∈ {1, . . . , N}, ∇ denotes the gradient). In the inter-
face, which separates the bulk phases, the phase field exhibits
a smooth monotonic transition (|∇φα| �= 0, α ∈ {1, . . . , N}).
Moreover, apart from bulk diffusion, some material systems
are strongly governed by rapid diffusion along the interfaces,
such as, for example, during thermal grooving [19,20]. The in-
corporation of surface diffusion in phase-field models requires
additional terms to be included in the model. Since the current
work focuses on this particular subject, the historical progress
for surface diffusion, in the field of phase-field models, is
explained in detail in the following section.

B. Surface diffusion in phase-field models

1. Fourth-order conservative equation
[Cahn-Hilliard (CH) equation]

In the context of phase-field models, it was first proposed
by Cahn and Taylor [21] that the Cahn-Hilliard equation with
a suitable composition-dependent mobility leads to a diffuse
interface counterpart of motion by surface diffusion, or to mo-
tion by means of the surface Laplacian of the mean curvature.

The governing equations write as

∂c

∂t
= ∇ · [M(c)∇ω], (1)

ω = ∂ f (c)

∂c
− ε2∇2c, (2)

where c is a composition, ω is a chemical potential, and ε is a
parameter related to the interface width. ∇· denotes the diver-
gence operator. Note that all dimensions of time and space, as
well as energy, are dimensionless in this form. The mobility
function M(c) is chosen in such a way that the diffusion is re-
stricted to the narrow interfacial region. This means that if the
potential f (c) is chosen such that 0 and 1 represent the bulk
phases M(c) �= 0, for 0 < c < 1 and M(c) = 0 elsewhere.

Two forms of f (c), namely, (i) of the obstacle type [i.e.,
f (c) = c(1 − c) for 0 < c < 1 and ∞ elsewhere] and (ii)
of the well type [i.e., f (c) = c2(1 − c)2], were discussed in
conjunction with a quadratic degenerate form of mobility [i.e.,
M(c) = c(1 − c)]. It was further argued that the choice of a
degenerate mobility function restricts atomic transport to the
interfacial region, since the obstacle-type free energy drives c
to exactly 0 and 1. With a formal asymptotic analysis, it was
later shown by Cahn et al. [22] that such obstacle-type free
energy, along with a degenerate mobility, results in interface
motion by the surface Laplacian of the mean curvature.

Since then, most of the works have employed a quadratic
mobility, in conjunction with a well-type free energy [23–29].
A biquadratic mobility function [i.e., M(c) = c2(1 − c)2] was
also introduced in some works [30–32], without discussing
a clear rationale. The domain of applicability was extended
to study the coarsening of two-phase mixtures [23,24,29,33–
35], solid-state dewetting [28,36], thin film growth [37–39]
and coupled problems of electromigration [40–42], as well as
stress-induced surface instability [25,31]. In fact, an asymp-
totic analysis for a well-type free energy was first performed
for a coupled electromigration [40] and mechanics problem
[31]. While the latter article employed a biquadratic form of
mobility, the former introduced a mobility function of the type
M(c) = ∇c · ∇c. The motion caused by the surface Lapla-
cian of the curvature and the motion caused by the surface
Laplacian of the electric potential or stress was recovered
in the limit ε → 0. The numerical results by Lacasta et al.
[33,34], Bray and Elliot [35], Puri et al. [23], Zhu et al.
[24], and Dai and Du [29] agree that such a combination
does not lead to kinetics limited by pure surface diffusion, but
additionally consists of contributions from bulk diffusion. The
aforementioned result has recently been proved rigorously and
independently by Dai and Du [43] and Lee et al. [44,45],
using a matched asymptotic analysis. The analysis clearly
reveals that such a combination results in the presence of a
bulk diffusion term at the same order as the surface diffusion
term. This can be attributed to the fact that in CH models, c
serves a dual purpose of providing the composition in the bulk
and tracking the interface. As a result of the Gibbs-Thomson
effect, the value of c deviates from the equilibrium values, as
c = ceq + kκε/ f ′′(ceq ), depending on the curvature, where k
is a positive constant and κ is the curvature. It was further
shown in [43,45] that the contribution of the bulk diffusion
flux to the interface velocity is dependent on the derivative
of the mobility M ′(co), where co are the equilibrium values

033307-2



MULTIPHASE-FIELD MODEL FOR SURFACE DIFFUSION … PHYSICAL REVIEW E 103, 033307 (2021)

in the respective phases. The higher order degeneracy in the
mobility function satisfies the criterion M ′(co) = 0 to negate
the unwanted contribution of the bulk diffusion. In the context
of solid-state dewetting, numerical comparisons between the
quadratic and biquadratic mobilities confirm the mathematical
analysis [46]. For a well-type free energy, Rätz, Ribalta and
Voigt [32] developed an alternative doubly degenerate model
for surface diffusion. The special feature of the model is the
presence of a stabilizing function g(c) which, similar to the
free energy and mobility, is biquadratic, i.e.,

∂c

∂t
= ∇ ·

[
M(c)

ε
∇ω

]
, (3)

g(c)ω = 1

ε

∂ f (c)

∂c
− ε∇2c. (4)

The term doubly degenerate refers to the degeneracy in both
the mobility and the stabilizing function. Although the role of
the stabilizing function is not apparent from the asymptotics,
it has been shown to perform better in numerical calculations
[32,39,47,48]. Interestingly, a rescaling of Eqs. (3) and (4), as
compared to Eqs. (1) and (2), is evident, since the mobility
and the chemical potential were scaled by ε. Consequently,
the leading-order inner chemical potential in the asymptotic
expansion is equal to the curvature. As opposed, Eqs. (1)
and (2) recover the Gibbs-Thomson condition as a first-order
correction. Our understanding of the recovery of surface diffu-
sion from the fourth-order CH equation is still evolving. The
current understanding of the subject is that a higher degen-
eracy in mobility is warranted for a biquadratic free energy,
so as to suppress the contribution from bulk diffusion, while
the combination of obstacle-type free energy and degenerate
mobility suffices to recover pure surface diffusion. The role
of stabilizing functions is still a topic of an active debate
[49,50]. In addition to the scalar mobilities, tensorial mobili-
ties have also been proposed by Gugenberger et al. [47], which
inherently restrict diffusion along the interface. Using both
asymptotic analysis and a numerical example, comparisons of
scalar and tensorial mobilities were provided, which revealed
a better performance of the latter for certain cases.

2. Coupled fourth-order conservative [Cahn-Hillard (CH)] and
second-order nonconservative [Allen-Cahn (AC)] equation

There are many problems in materials science, where sur-
face diffusion is often accompanied by surface attachment
kinetics [21,51]. In addition, most materials are polycrys-
talline. The temperature range of interest, where surface
diffusion is dominant, leads to concurrent grain growth in
multigrain materials. In such settings, the interphase bound-
ary (the interface between two chemically different phases)
evolves via surface diffusion, while the grain boundaries mi-
grate by means of curvature. Sintering [52,53], grooving, and
pitting in polycrystalline thin films [54,55], solid-state dewet-
ting in polycrystalline materials [56], and grain growth in
porous solids [57,58] are a few examples of such a coupled
motion. To tackle such problems within the context of phase-
field models, the Cahn-Hilliard (CH) equation is coupled
to an Allen-Cahn (AC) equation. The conservative variable
distinguishes between the interphase boundaries, while the
nonconservative variables differentiate between the various

grain orientations in the solid. The coupled system of equa-
tions writes as

∂c

∂t
= ∇ · [M(c, φ)∇ω], (5)

ω = ∂ f (c, φ)

∂c
− ε2∇2c, (6)

τ (ε)
∂φ

∂t
= qε2∇2φ − ∂ f (c, φ)

∂φ
, (7)

where q is a positive constant, introduced to tailor disparate
surface and grain boundary energies. τ is the grain boundary
relaxation parameter, which is a function of ε. f (c, φ) is a
typical Landau polynomial, which is a sum of a double well
(or obstacle) in c, a multiwell (or multiobstacle) in φ, so as to
account for different grains in the solid, and a coupling term
in c and φ [52,54]. The function f (c, φ) additionally must
satisfy ∂ f (c, φ)/∂c|c=ceq

s
= 0 at each point inside the solid,

including the grain boundaries, to fulfill the condition of a
non-adsorption of ghost phases. ceq

s represents the equilibrium
value in the solid. The mobility function now is enslaved to
both c and φ, to account for disparate mobilities along the
surface and grain boundaries. Equations (5) and (7) are known
as a system of degenerate Cahn-Hilliard and nondegenerate
Allen-Cahn equations, because τ is independent from the field
variables. Since f (c, φ) is constructed in such a way that c is
constant in the solid, in the course of the evolution, the kinetics
of the grain boundary is governed by the Allen-Cahn equation
(7). Due to the inherent coupling, any motion of the interphase
boundary depends on the scaling of the grain boundary relax-
ation parameter [59]. For τ = O(1), the surface motion is due
to the geometric law, which combines surface diffusion and
surface attachment kinetics. For this scaling process, the grain
boundary moves through the motion of the mean curvature.
To recover a pure motion of the interphase boundary, limited
by surface diffusion, τ has to scale as τ = O(ε). Accordingly,
the grain boundary is in its equilibrium configuration, i.e., the
curvature of the grain boundary is zero. In the case of a well-
type potential, the restriction of the order of mobility function,
to recover a pure motion, limited by surface diffusion, still
holds for these systems of equations.

A different version of Eq. (7), along with Eq. (5), namely,
a degenerate CH equation and a degenerate AC equation (τ
is a function of c and φ), has been analyzed by Novick-
Cohen and co-workers [60,61]. In such systems of equations,
one can also derive a case where the interphase boundary
moves via surface diffusion and the grain boundary is gov-
erned by curvature. These systems of equations have been
employed in a multitude of problems, ranging from sintering
[52,62–65] to the interaction between pores and grain bound-
aries [66–68], grain boundary grooving [54,63,69,70], grain
growth in porous solids [57,58,71], additive manufacturing
processes, such as selective laser sintering [72], and direct ink
writing [53].

3. Coupled second-order conservative
and nonconservative equations

The form of the governing equations, which perhaps has
received the least attention in this regard, is a system of a
coupled second-order diffusion equation and a second-order
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nonconservative Allen-Cahn equation. The governing set of
equations is the same as Eqs. (5) and (7), but without the
Laplacian term in the diffusion equation. Since the gradi-
ent energy of the conserved variable has been dropped from
the free energy functional, an additional phase-field variable
has to be introduced to demarcate the interphases. Thus, the
phase-field variables are introduced only to differentiate be-
tween interphase boundaries and grain boundaries. Hereby,
the conservative variable exclusively accounts for the atomic
transport.

In such a framework, Amirouche and Plapp [73] pre-
sented a model for discontinuous precipitation, based on a
well-type potential. While the study did not focus only on
surface diffusion, it constitutes one of the many mass transport
mechanisms. Among other findings, the authors discussed
difficulties regarding the recovery of the Gibbs-Thomson con-
dition, in the case of a strong surface diffusion, since the
chemical potential in the interface region remained nonuni-
form and dependent on the initial condition. Chakraborty
et al. [74] studied the phenomenon of surface diffusion
and electromigration-induced grain boundary grooving in the
grand-potential framework and used an obstacle-type poten-
tial. Within a similar approach, Hötzer et al. [75] studied
the sintering of particles with surface diffusion as one of the
primary mass transport mechanisms, as well as concurrent
grain growth. To restrict diffusion along the interfaces, all
aforementioned works have considered a scalar mobility func-
tion. Greenquist et al. [76,77] have also developed a grand
potential-based sintering model, in conjunction with a tenso-
rial mobility approach.

Although numerical results were presented in the above-
mentioned articles, the convergence of the coupled system
of equations to the sharp interface limit has not been shown
formally. We aim to bridge the gap by recovering the geo-
metric laws for such a combination of governing equations. If
the interfacial motions are recovered, such a system of equa-
tions can be a viable alternative to the previously discussed
models.

First, a second-order diffusion equation expedites nu-
merical calculation by obviating the need to discretize the
additional Laplacian operator at each time step. With an ex-
plicit spatial and widely employed discretization scheme, the
temporal discretization width �t scales as (�x)4, for a fourth-
order diffusion equation with the spatial dicretization width,
and as (�x)2, for a second-order diffusion equation. Thus,
for the same spatial discretization width, a higher temporal
discretization width can be utilized with these systems of
equations, without initiating numerical instabilities.

Second, the presence of the gradient energy term in the
conserved order parameter makes the interfacial energy of
the free energy functional dependent on the chosen bulk-free
energy expression. This dependency not only complicates the
parametrization, but inherently couples the interfacial energy
and width, which cannot be chosen independently. For the
present system of second-order conservative and nonconser-
vative equations, which are based on the grand potential
model or on the related Kim-Kim-Suzuki [10] framework,
the interfacial energy and width can be set independently.
Moreover, the grand potential model supports multiple phases
and components in a generic way, because the free energy

functions fα (cα ) can be chosen freely, in contrast to f (c) in
the Cahn-Hilliard equation.

Finally, the interface in these models is defined by a
level set of the phase field, which does not exhibit a Gibbs-
Thomson correction. In other words, this implies that the bulk
values of the phase field do not deviate from 0 and 1. Since the
mobility function depends on φ, instead of c, the restriction,
which exists on its order, as in the previous two cases, should
not hold here. Therefore, the equilibrium composition has
not necessarily to be zero or unity, but can assume arbitrary
values in the bulk. Moreover, an extension, formulated in
the grand-potential framework, is promising since it inherits
the readily available applicability to multiphase and multi-
component systems. Due to these reasons, the hope is that
such a surface-diffusion model can be made applicable to a
much wider range of materials, in contrast to the existing
Cahn-Hilliard models.

II. EXTENDED GRAND-POTENTIAL MODEL

A. Grand-potential model

The grand-potential approach [14,15] essentially makes a
mark by preferring the pair (grand potential, chemical poten-
tial) over the much traditional combination [(Helmholtz) free
energy, concentration]. The formulation begins by expressing
the grand-potential functional of the system of volume V as

�(φ,∇φ,μ) =
∫

V

1

ε
w(φ) + εa(∇φ) + ψ (φ,μ) dV, (8)

which applies for a multiphase and multicomponent system
of N phases (φ ≡ {φα, . . . , φN }) and K components with the
corresponding chemical potentials μ ≡ {μ1, . . . , μK−1}. Here
w (in J/m2) and a (in J/m4) are the potential and gradient
contributions to the interfacial free energy and ε is a parameter
related to the interface thickness (a length in m). Using the
dimensionless interpolation function hα (φ), the overall grand-
potential density ψ (of unit J/m3) is expressed as

ψ (φ,μ) =
N∑

α=1

ψα (μ)hα (φ), (9)

where the grand-potential densities of the individual
phases ψα

ψα (μ) = f α[cα (μ)] −
K−1∑
i=1

μic
α
i (μ), ∀ α ∈ {1, . . . , N} (10)

are expressed by the individual bulk free energies f α (in J/m3)
and the phase-dependent compositions cα ≡ {cα

1 , . . . , cα
K−1}

(mole fractions, dimensionless).
A quasi-equilibrium is locally assumed between the

phases, such that

∂ f α (cα )

∂cα
i︸ ︷︷ ︸

≡μα
i

= ∂ f β (cβ )

∂cβ
i︸ ︷︷ ︸

≡μ
β
i

= · · · = μi, ∀{i, α}. (11)

When treating cα
i as mole fractions, please note that the no-

tion of a chemical potential in the phase-field model is slightly
different from the standard thermodynamic definition. The
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quantities μi are of unit J/m3 and hence are chemical poten-
tials per unit volume. Since the molar volume Vm is typically
a constant in the grand-potential model, which is independent
of the phase and the composition, the chemical potential is
related to the true chemical potential μ̃i, of unit J/mol, by
means of μi = μ̃i/Vm. In the following, both symbols will be
used. To maintain a certain level of consistency, whenever a
chemical potential of unit J/mol appears, it is written with a
tilde, otherwise the unit J/m3 does apply. Following [13,78],
the chemical potentials should be treated more as chemical po-
tential differences (so-called diffusion potentials), according
to the definition above. Therefore, we write μ̃i ≡ μ̃ind

i − μ̃ind
K ,

where μ̃ind
i represents the true individual chemical potential

of the component i. This is also the reason why a number of
K − 1 chemical potentials suffice to completely specify the
chemical state of the system.

From the phase-dependent cα , an interpolated composition
c ≡ {c1, . . . , cK−1} is written as

ci =
N∑

α=1

cα
i hα (φ), ∀ 1 � i � K − 1, (12)

which may also be derived as a derivative of the grand poten-
tial ∂ψ/∂μi = −ci. The composition of the K th component
is implicitly treated through the sum condition

∑K
i=1 ci = 1.

Here the interpolation function hα (φ) is appropriately formu-
lated to exhibit a smooth and monotonic transition across the
diffuse interface. Additionally, it satisfies the conditions

N∑
α=1

hα (φ) = 1, (13)

hα ({φα = 0, . . . }) = 0 ∀ α, (14)

hα ({φα = 1, . . . }) = 1 ∀ α. (15)

The temporal evolution of the interpolated composition for
the component i can be expressed as

ċi = −∇ · ji, (16)

which preserves its conserved nature, where ji is the cor-
responding flux. Note that the flux is written here in terms
of composition, instead of concentration, and hence is of
unit m/s.

Rewriting Eq. (16) with the help of Eq. (12) and using the
product rule

ċi =
N∑

α=1

ḣα (φ)cα
i (μ) +

N∑
α=1

hα (φ)ċα
i (μ), (17)

the evolution of the dynamic variable, the chemical potential,
is obtained by inverting each ċα

i (μ), in favor of μ̇, as

μ̇i =
[

N∑
α=1

hα (φ)
∂cα

j (μ)

∂μi

]−1[
ċ j −

N∑
α=1

cα
j (μ)ḣα (φ)

]
. (18)

Please note that for the sake of brevity, the above equation is
written in the Einstein notation and represents a linear system
of K − 1 equations, in the most general case.

The grand potential above may be obtained through a
Legendre transformation of the free-energy density of the

individual phases, with respect to the composition from a
related model [13]. However, the model from Eiken et al.
requires to be solved for each of the phase-dependent com-
positions cα . The advantage of treating a single chemical
potential, instead of N phase-dependent compositions, is
that the computational complexity is largely reduced. The
reduction applied through Eqs. (17) and (18) rests on the
explicit invertibility of the phase-dependent composition and
the chemical potential, which can be written as cα

i (μ), for
example. In the grand-potential model, the chemical potentials
μ therefore are identified as the fundamental variables which
govern the evolution.

The phase fields in the grand-potential model are non-
conserved, and their evolution is commonly expressed by
a multiphase extension of the Allen-Cahn equation. In the
present approach, the migration of the interface is formulated
as the pairwise interaction of all possible phase combinations
[17]. Correspondingly, the temporal evolution of the phase
field is expressed as

εφ̇α = 1

Ñ

N∑
β = 1
β �= α

mαβ

(
δ�

δφβ

− δ�

δφα

)
, (19)

where mαβ is the mobility of the interface (of unit m4/(J s)),
separating the phases α and β, and Ñ denotes the number
of locally coexisting phases. For an introduction to boundary
mobilities, the interested reader is referred to [79, Chap. 5].

The grand-potential model is formulated both in conjunc-
tion with a well-type potential [14] and an obstacle-type
potential [15]. In the current work, the obstacle-type potential
is utilized, which is written as

w(φ) =

⎧⎪⎪⎨
⎪⎪⎩

16
π2

N,N∑
α, β = 1
α < β

γαβφαφβ, φ ∈ G

∞, φ /∈ G,

(20)

where a Gibbs simplex G, which reads as

G =
{

N∑
α=1

φα = 1 : φα � 0 ∀ α

}
, (21)

is added to the formulation. The simplex G heavily penalizes
the phase field beyond the imposed condition. For the current
multiphase-field treatment, the gradient energy density a(∇φ)
is expressed as [17]

a(∇φ) =
N,N∑

α, β = 1
α < β

γαβ∇φα · ∇φβ, (22)

where γαβ denotes the interfacial energy (of unit J/m2)
between the α and β phase. This completes the model specifi-
cation.

A few interesting features of the grand-potential model are
worth noting. First, it elegantly avoids an artificial coupling
between the interfacial and the bulk contributions, which usu-
ally arises in models taking the (free energy, concentration)
pair route [80]. In contrast, alternate techniques avoid the
coupling either by specific relations between the interpolation
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functions [11,12] or by a so-called two-phase or mixture phi-
losophy [10,13].

The phase-field approach, based on the grand-potential
formalism, has been employed extensively to model so-
lidification [81–84] and solid-state transformation [85,86],
including multicomponent systems [87,88]. Furthermore, this
technique is also combined with an elastic model, in order to
analyze chemoelastic transformations [89,90]. Much different
from these conventional studies, this approach has recently
been adopted to investigate energy-minimizing, curvature-
driven transformations, where the phase field behaves in
a conserved fashion [91–95]. In all analyses involving the
grand-potential formalism, volume diffusion is treated as the
primary mode of mass transfer.

Moreover, it should be mentioned that the ability to re-
cover the sharp interface solution is not discussed in works
where surface and grain-boundary diffusion are introduced
[74,75,96]. This is the starting point for the extension pre-
sented in the following section.

B. Introducing surface flux

In the grand-potential framework, the composition evo-
lution is often formulated to exclusively include bulk
diffusivities. Such considerations overlook the physically con-
ceivable atomic migration along the local tangential directions
of the interface. Therefore, the existing approach is extended
in the present work, by explicitly including an interface flux in
the composition evolution. Accordingly, the flux ji in Eq. (16)
is written as

ji = jb
i + js

i , (23)

where jb
i and js

i correspond to the flux contributed by volume
(bulk) and surface diffusion, respectively. Analogous to the
existing formulations, the bulk flux is expressed as

jb
i = −

N∑
α=1

K−1∑
j=1

Mα
i j (μ)hα (φ)∇μ j . (24)

Since the composition is generally expressed in mole (or site)
fractions, the flux of the solvent is ascertained from the evo-
lution of K − 1 components. In Eq. (24), the mobility of the
ith migrating species is dictated by Mα

i j (μ) = Dα
i j∂cα

i (μ)/∂μ j ,
which includes the interdiffusivity matrix Dα

i j and a suscepti-
bility matrix ∂cα

i (μ)/∂μ j .
The surface flux, included in the extended composition

evolution in Eq. (16), is written as

js
i = −1

ε

N,N∑
α, β = 1
α < β

K−1∑
j=1

Mαβ
i j (φ)∇μ j, (25)

where the degenerate mobility matrix for a particular α-β
interface Mαβ (φ) ∈ R(K−1)×(K−1) writes as M̄αβ

gαβ (φ). The

prefactors M̄αβ ∈ R(K−1)×(K−1), which quantify the surface
diffusion and are of unit m6/(J s), can be treated as con-
stant. However, when including the appropriate susceptibility
parameters, they may be expressed quantitatively by an in-
terdiffusivity matrix and a constant related to the activation
energy. In Eq. (25), the inclusion of ε ensures that the transport

along the interface will not vanish for small interface widths.
The interfacial mobility function gαβ (φ) is unitless and ap-
pears as a bell-like function to satisfy the condition

gαβ (φ) =
{
>0, φα > 0 ∩ φβ > 0
0, φα = 0 ∪ φβ = 0.

(26)

Numerous forms of gαβ (φ) have hitherto been involved to
confine the diffusion to the interface. Examples which satisfy
the condition stated above are gαβ (φ) = φn

αφn
β , with n > 0,

n ∈ R.

III. SHARP-INTERFACE RELATIONS

The effect of curvature on the chemical potential is given
by [97]

μ̃ = μ̃eq + Vmκsγs, (27)

where μeq represents the chemical potential in equilibrium
with a flat surface, Vm denotes the molar volume, γs rep-
resents the (isotropic) interfacial energy of the surface, and
κs denotes the signed curvature of the surface. Given that a
two-dimensional surface profile is represented as y(x, t ) in a
Cartesian coordinate system, at time t , the curvature writes as

κs = − y′′

(1 + (y′)2)3/2
, (28)

where primes denote differentiation with respect to x.
Please note that a common misconception is to assume

Eq. (27) to be universally valid, which is emphasized in [98,
p. 434]. A more generic and rigorous relation can be given,
which is shown in Appendix A. However, the above equation
is the basis of the historically grown surface diffusion theory,
which is presented in the following subsection.

A. Surface diffusion

According to Mullins [19], as a result of surface diffu-
sion, matter is tangentially transported to the interface, with a
flux of

js = −Dsρs

RT
∇sμ̃, (29)

where Ds denotes the surface diffusion coefficient (in m2/s),
ρs represents the number of atoms per surface area (in
mol/m2), R is the ideal gas constant [≈8.314 J/(mol K)], T
denotes the temperature (in K), and ∇s represents the sur-
face gradient operator. The surface flux therefore is of unit
mol/(m s), and hence is not a usual flux, but the surface
excess flux. For a definition of the surface excess properties,
the interested reader is referred to [99, p. 7 ff., p. 55 ff.] and
[100, p. 179 ff.]. The surface divergence ∇s· of the surface
excess flux leads to a normal displacement of the surface
profile, which can be written as

vn = −Vm∇s · js = DsVmρs

RT
∇2

s μ̃, (30)

where vn denotes the scalar normal velocity of the interface
and ∇2

s represents the surface Laplacian operator. By inserting
the relation (27), the above equation is expressed in terms of
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curvature to obtain

vn = DsV 2
mρsγs

RT
∇2

s κs = B∇2
s κs (31)

as the governing equation for a change in the shape of the sur-
face. Thus, the rate at which the surface evolves is controlled
by the rate constant B (of unit m4/s), which is defined as

B ≡ DsV 2
mρsγs

RT
. (32)

B. Surface diffusion and attachment kinetics

While exclusively considering surface diffusion, the pro-
cess of incorporating atoms at the surface is (tacitly) assumed
to be comparatively fast. However, the rate at which atoms can
be attached to or detached from the surface is limited, since
the corresponding material property is the mobility of the
interface ms (of unit m4/(J s)). This property reflects the ease
of attaching or detaching atoms from the surface. In the work
of Cahn et al. [21], a modified governing law is derived for
the combination of surface diffusion and attachment kinetics.
The corresponding equation in the current notation writes as

vn = −∇2
s

(
1

ms
∇2

s − γs

B

)−1

κsγs. (33)

Interestingly, the above equation introduces another length
scale:

lc ≡
√

B

γsms
=

√
DsV 2

mρs

RT ms
, (34)

while the motion by attachment kinetics dominates at length
scales much smaller than this quantity. In the limit of a highly
mobile boundary (ms → ∞), the length scale at which the
kinetics are dominated by the attachment becomes negligibly
small (lc → 0) and the same law as given in Eq. (31) is
recovered. For fast diffusion (B → ∞), the motion caused by
the difference of the mean curvature dominates at all length
scales (lc → ∞). According to [32], Eq. (33) can be rewritten
as a system of two coupled second-order equations:

vn = B

γs
∇2

s μ, (35)

μ = μeq + κsγs + vn

ms
. (36)

Therefore, the presence of limited attachment kinetics results
in a relaxed form of the Gibbs-Thomson relation, including a
term which is proportional to the interface velocity.

IV. ASYMPTOTIC ANALYSIS

The ability of a phase-field technique to recover the sharp-
interface solution is commonly elucidated through asymptotic
analysis [9,11,15,22,31,32,45,47,59,60,101]. Moreover, to
calibrate the model, the asymptotics serves as a method to
identify the (otherwise unknown) relation between material
properties and model parameters. Therefore, in performing
this analysis, a quantitative physical interpretation of the sim-
ulation results is achieved. The original extension of the grand
potential approach to a multiphase system includes asymp-
totic treatment [15]. Since these asymptotics were primarily

directed toward solidification, vanishing diffusivity, at one
side of the interface, accompanies the analysis. Despite the
subsequent extensions [93,102], the consideration of volume
diffusion as the only mode of mass transfer reflects in the
asymptotics. Therefore, the present model is asymptotically
treated for an exclusively surface-diffusion governed evo-
lution. Since the cumulative roles of surface and volume
diffusion are formulated linearly, the exclusive consideration
of surface diffusion in the asymptotics is considered rea-
sonable. Furthermore, owing to the significance of surface
diffusion in curvature-driven transformations, the following
asymptotics is delineated correspondingly.

A. Evolution equations for a two-phase system

Although the model is formulated for multiphase and mul-
ticomponent systems, the evolution of a two-phase binary
system is analyzed asymptotically. The two-phase considera-
tion obviates the need for a vector representation of the phase
field, and a sole order parameter φα remains, while the second
phase φβ = 1 − φα is considered implicitly. Additionally, the
single independent composition and the chemical potential
are denoted by c ≡ c1 and μ ≡ μ1, without any subscript.
Moreover, since the surface diffusion is assumed to be the ex-
clusive path for the mass transfer, the corresponding mobility
is represented by M(φα ) = M̄αβg(φα ) ≡ Mαβ

11 (φ).
From Eqs. (19) and (18), the evolution equations for the

two-phase binary systems are expressed as

ε

mαβ

φ̇α = εγαβ∇2φα − 8γαβ

επ2
(1 − 2φα ) − ψα − ψβ

2

∂hα

∂φα

,

(37)
∂c

∂μ
μ̇ = ∇ · M(φα )

ε
∇μ − (cα (μ) − cβ (μ))ḣα. (38)

While the first term on the right-hand side of Eq. (37) is the
derivative of the gradient-energy function, the obstacle-type
potential in the present formulation yields the second term.
The operation of the well-type potential is fundamentally
different from the obstacle-type potential. While in well-type
functions, the bulk values of the phase fields are achieved
trough their global minima, the piecewise nature in obstacle-
type potentials is responsible for the boundedness of the
phase field. For a well potential-type equation, the domain is
commonly split into inner and outer regions, and solutions
are obtained by matching both of them. However, due to
the strictly finite width of the interface, resulting from the
obstacle potential, and owing to the sole consideration of
surface diffusion, a procedure following Cahn et al. [22] is
adopted. Accordingly, the current analysis is restricted to the
inner region, where the phase field remains strictly bounded
between zero and unity.

B. Curvilinear coordinates

The governing equations may be expressed in a mov-
ing curvilinear coordinate system, which is parameterized
by (r, s, t), where r denotes the signed distance from the
isosurface r = 0 and s measures the arc length along it, at
time t . Then the position x can be written as x(r, s, t ) =
x0(s, t ) + rn(s, t ), where x0(s, t ) is referred to as the baseline.
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The normal vector n and the tangential vector s ≡ ∂x0/∂s are
mutually orthonormal vectors, respectively pointing into the
direction of increasing r and s. The origin of the normal vari-
able r is chosen in such a way that r = 0 corresponds to the
isosurface φα = 1/2. Note that by this choice, the curvature
κ0 of the baseline r = 0 corresponds to the curvature of the
isosurface φα = 1/2, and hence is a property of the phase
field. In the current paper, a sign convention for curvature
is chosen such that in the case of a positive sign of κ0, n
points from the center of curvature to a point on the baseline.
The scalar normal velocity vn ≡ n · ∂x/∂t |r,s delineates the
motion of this phase-field contour in space. Since r is the
signed distance from the baseline, vn is independent on r.
Let us denote the positions r+ and r− as the points where
the phase field assumes zero and unity values, respectively.
Then its minimum and maximum values are assumed at these
points, according to the Gibbs simplex [Eq. (21)]. Thus, the
following conditions are satisfied:

φα (r = 0, s) = 1/2, (39)

φα (r−, s) = 1, (40)

φα (r+, s) = 0, (41)

∂φα

∂r

∣∣∣∣
r±,s

= 0. (42)

While the behavior of the phase field inside the interface is
well characterized by Eq. (37), the above conditions are re-
quired to capture the inherent behavior of the solutions, as the
bulk is approached, where r > r+ ∪ r < r−. For the diffusion
equation, a flux boundary condition is accordingly applied
at either end of the interface. The corresponding relations
read as

lim
r→r±

−M(φα )

ε

∂μ

∂r
= vn[c(r±) − c±], (43)

where c(r±) is the interpolated composition as an inner
limit (from within the interface) and c± is the corresponding
outer limit (from the bulk). The above relation is derived
from a balance at the interfacial endpoints, as shown in
Appendix C 2.

Now the inner region, which is also referred to as the
interface, is well defined as the interval r− � r � r+. The
endpoints r± are not known a priori, but their derivation is
part of the problem. In the curvilinear coordinate system, the
differential operators are expressed as

∇ = n
∂

∂r
+ s

1

1 + rκ0

∂

∂s
, (44)

∇ · (a∇b) = ∂

∂r

(
a
∂b

∂r

)
+ 1

(1 + rκ0)2

∂

∂s

(
a
∂b

∂s

)

+ a

[
κ0

1 + rκ0

∂b

∂r
− r ∂κ0

∂s

(1 + rκ0)3

∂b

∂s

]
, (45)

∇2 = ∂2

∂r2
+ κ0

1 + rκ0

∂

∂r
+ 1

(1 + rκ0)2

∂2

∂s2
− r ∂κ0

∂s

(1 + rκ0)3

∂

∂s
,

(46)

which can be derived from differential geometry, as given in
[103].

C. Preliminary statements

In the subsequent analysis, the set of equations will be
evaluated order by order. In order to simplify the analysis, fre-
quently used formulas and symbols are stated in the following.

To study the inner region, a stretched coordinate η = r/ε
is utilized. Rescaled and expanded in powers of ε, one obtains

∇ = 1

ε
n

∂

∂η
+ s

∂

∂s
+ O(ε), (47)

∇ · (a∇b) = 1

ε2

∂

∂η

(
a
∂b

∂η

)
+ aκ0

ε

∂b

∂η

− aηκ2
0
∂b

∂η
+ ∂

∂s

(
a
∂b

∂s

)
+ O(ε), (48)

∇2 = 1

ε2

∂2

∂η2
+ κ0

ε

∂

∂η
− ηκ2

0
∂

∂η
+ ∂2

∂s2
+ O(ε). (49)

We may express the temporal derivative ∂ϕ/∂t |r,s,t of any
scalar field ϕ(x, t ), observed by following the trajectory of the
point x(r, s, t ) on the surface at constant r and s, as [104, cf.
Eq. (3.7)]

∂ϕ(x(r, s, t ), t )

∂t

∣∣∣∣
r,s,t

= ∇ϕ · ∂x
∂t

∣∣∣∣
r,s,t

+ ∂ϕ

∂t

∣∣∣∣
x(r,s,t )

. (50)

The last term is the standard time derivative of the scalar field
holding x fixed (∂ϕ/∂t |x ≡ ϕ̇). v(r, s, t ) ≡ ∂x/∂t |r,s,t denotes
the parametrization-dependent surface velocity, which tracks
the motion of the surface, keeping r and s fixed. Since ∇ϕ =
∇sϕ + n ∂ϕ/∂r and v = vtan + n vn, where vtan denotes the
parametrization-dependent tangential velocity, one obtains

ϕ̇ = ∂ϕ

∂t

∣∣∣∣
r,s,t

− vtan · ∇sϕ − vn
∂ϕ

∂r
. (51)

Note that ϕ̊ ≡ ∂ϕ/∂t |r,s,t − vtan · ∇sϕ is the parametrization-
independent normal time derivative [104, Eq. (3.12)], which
provides the temporal change of the variable following the
normal trajectory of the surface. Hence it follows that

ϕ̇ = ϕ̊ − vn
∂ϕ

∂r
. (52)

When applied to the phase field and the chemical potential,
this results in

φ̇α = φ̊α − vn

ε

∂φα

∂η
, (53)

μ̇ = μ̊ − vn

ε

∂μ

∂η
. (54)

The width of the interface in the stretched coordinate sys-
tem is denoted by δ and is defined as δ ≡ η+ − η−, where η±
denotes the position of the ends of the inner region η± = r±/ε.
The phase field and chemical potential, expanded in powers of
ε, write as

φα = φ0
α + εφ1

α + ε2φ2
α + O(ε3), (55)

μ = μ0 + εμ1 + ε2μ2 + O(ε3). (56)
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Note that both η± are not necessarily independent of ε, but
may change due to the presence of φ1

α and higher-order con-
tributions. Therefore, both endpoints are expressed as

η± = η0
± + εη1

± + ε2η2
± + O(ε3). (57)

The two quantities M and hα are only a function of the order
parameter:

M = M0 + εM1 + ε2M2 + O(ε3), (58)

hα = h0
α + εh1

α + ε2h2
α + O(ε3). (59)

Therefore, the lowest order terms write as h0
α ≡ hα|ε=0 =

hα (φ0
α ) and M0 ≡ M|ε=0 = M(φ0

α ). Bear in mind that ḣα =
h̊α − vn/ε∂hα/∂η. To incorporate the boundary conditions
[Eqs. (42) and (43)] in the rescaled coordinate system order
by order, Taylor expansions are performed in Appendix C. It
will be useful to introduce the quantity J ≡ M∂μ/∂η, which
represents the negative rescaled flux in the normal direction,
and rewrite it in the following form:

J = J0 + εJ1 + ε2J2 + O(ε3), (60)

where the individual terms necessarily take the form

J0 ≡ M0 ∂μ0

∂η
, (61)

J1 ≡ M0 ∂μ1

∂η
+ M1 ∂μ0

∂η
, (62)

J2 ≡ M0 ∂μ2

∂η
+ M1 ∂μ1

∂η
+ M2 ∂μ0

∂η
. (63)

By expressing the operators in terms of the stretched curvi-
linear coordinate system, the following evolution equation is
obtained for the phase field:

(−v0
n − εv1

n

mαβγαβ

− κ0

)(
∂φ0

α

∂η
+ ε

∂φ1
α

∂η

)
+ εηκ2

0
∂φ0

α

∂η
+ εφ̊0

α

= 1

ε

∂2φ0
α

∂η2
+ ∂2φ1

α

∂η2
+ ε

∂2φ2
α

∂η2
+ ε

∂2φ0
α

∂s2

− 8

π2

[
1

ε
− 2

(
1

ε
φ0

α + φ1
α + εφ2

α

)]

− ψα (μ0) − ψβ (μ0)

2γαβ

(
∂hα

∂φα

∣∣∣∣
ε=0

+ ε
∂ ∂hα

∂φα

∂ε

∣∣∣∣∣
ε=0

)

− εμ1 ∂hα

∂φα

∣∣∣∣
ε=0

∂ψα

∂μ

∣∣
μ0

− ∂ψβ

∂μ

∣∣
μ0

2γαβ

+ O(ε2). (64)

In the same stretched curvilinear coordinates, the evolution
equation of the chemical potential writes as

1

ε3

∂

∂η

[
(M0 + εM1 + ε2M2)

∂ (μ0 + εμ1 + ε2μ2)

∂η

]

+ M0κ0

ε2

∂μ0

∂η
+ M0κ0

ε

∂μ1

∂η
+ 1

ε

∂

∂s

(
M0 ∂μ0

∂s

)

+ M1κ0 − M0ηκ2
0 + v0

n ∂c/∂μ|φ0
α,μ0

ε

∂μ0

∂η

+ (cα (μ0) − cβ (μ0))
vn

ε

∂h0
α

∂η
+ O(1) = 0. (65)

D. Lowest order

1. Phase-field evolution

The lowest order in the extended equation [Eq. (64)] per-
tains to ε−1. The terms associated with this order of ε are
expressed as

∂2φ0
α

∂η2
+ 16

π2
φ0

α = 8

π2
. (66)

The phase-field profile along the normal direction is obtained
by starting with the general solution of the differential equa-
tion above, which reads as

φ0
α = 1

2
+ C1 cos

(
4

π
η

)
+ C2 sin

(
4

π
η

)
, (67)

where C1 and C2 are two undetermined constants that are fixed
by incorporating the corresponding boundary conditions. The
first parameter C1 = 0 is found by the relation φα (η = 0) =
1/2, at the lowest order. The boundary conditions of the
phase field, obtained from the corresponding expansions at
the lowest order [Appendix C, Eq. (C5)], are φα (η0

+) = 0,
φα (η0

−) = 1 and ∂φα/∂η|η0± = 0. Subjecting the differential
equation to these conditions results in the fact that not only
the second unknown constant is fixed as C2 = −1/2, but also
the initially unknown interfacial endpoints are found to be
η0

± = ±π2/8.
Therefore, the zeroth-order phase-field profile is well de-

fined as

φ0
α = 1

2
− 1

2
sin

(
4

π
η

)
. (68)

There are two interesting properties of the solution that are
worth considering: First, note that ∂φ0

α/∂s = 0, which implies
that ∂h0/∂s ≡ ∂hα (φ0

α )/∂s = 0 and ∂M0/∂s ≡ ∂M(φ0
α )/∂s =

0. Additionally, it has to be noted that differentiating φ0
α

with time, at constant η and s, results in ∂φ0
α/∂t |r,s,t =

∂φ0
α/∂t |η,s,t = 0. Together with ∂φ0

α/∂s = 0, it can be con-

cluded that its normal time derivative φ̊0
α vanishes.

2. Chemical potential

In the evolution equation of the chemical potential (65),
the lowest-order terms correspond to ε−3. Only a single term
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appears at this order, which reads as

∂

∂η

[
M

(
φ0

α

)∂μ0

∂η

]
= 0. (69)

Integration yields M(φ0
α )∂μ0/∂η = J0(η) = C, where C is

an undetermined constant. From the flux boundary condi-
tion at the lowest order (Appendix C 2), it follows that
J0(η0

±) = 0. Therefore, the normal flux at the lowest order
[J0(η) = M(φ0

α )∂μ0/∂η = 0] vanishes. According to Eq. (26)
M(φ0

α ) > 0 inside the interface. Hence μ0 assumes a constant
value which needs to be fixed by a further investigation at
higher orders.

E. Next to lowest order

1. Phase-field evolution

At the next order, in Eq. (64), the terms appearing at the
order unity are collected in the following equation:

∂2φ1
α

∂η2
+ 16

π2
φ1

α =
( −v0

n

mαβγαβ

− κ0

)
∂φ0

α

∂η

+ ψα (μ0) − ψβ (μ0)

2γαβ

∂hα

(
φ0

α

)
∂φα

. (70)

This is the lowest order at which curvature and a driving force,
arising from the difference in grand potentials, appear, which
govern the evolution. In order to obtain a relation between
these two driving forces, the above equation is first multiplied
on both sides by ∂φ0

α/∂η, to yield

∂2φ1
α

∂η2

∂φ0
α

∂η
+ 16

π2
φ1

α

∂φ0
α

∂η

=
( −v0

n

mαβγαβ

− κ0

)(
∂φ0

α

∂η

)2

+ ψα (μ0) − ψβ (μ0)

2γαβ

∂hα

(
φ0

α

)
∂φα

∂φ0
α

∂η
. (71)

Furthermore, to eliminate any dependence on η, the equation
is subsequently integrated across the interface:

∫ η0
+

η0−

∂2φ1
α

∂η2

∂φ0
α

∂η
dη + 16

π2

∫ η0
+

η0−
φ1

α

∂φ0
α

∂η
dη

=
( −v0

n

mαβγαβ

− κ0

)∫ η0
+

η0−

(
∂φ0

α

∂η

)2

dη︸ ︷︷ ︸
1/2

+ ψα (μ0) − ψβ (μ0)

2γαβ

∫ η0
+

η0−

∂hα

(
φ0

α

)
∂φα

∂φ0
α

∂η
dη. (72)

Evaluating the equation term by term shows that the last
integral on the right-hand side appears to be the interpolation
function and within the given interval identically is −1, owing
to its nature [Eqs. (14) and (15)]. The remaining contribution
of the left-hand side is ascertained through two subsequent

integrations by parts of the first term[
∂φ1

α

∂η

∂φ0
α

∂η

]η0
+

η0−

−
[
φ1

α

∂2φ0
α

∂η2

]η0
+

η0−

+
∫ η0

+

η0−
φ1

α

∂3φ0
α

∂η3
dη + 16

π2

∫ η0
+

η0−
φ1

α

∂φ0
α

∂η
dη

= 1

2

( −v0
n

mαβγαβ

− κ0

)
− ψα (μ0) − ψβ (μ0)

2γαβ

. (73)

The first term in brackets on the left-hand side turns out to
vanish since ∂φ0

α/∂η|η0±
= 0, if we, strictly speaking, assume

the boundedness of ∂φ1
α/∂η|η0±

. To tighten the argument, this

property of φ1
α is proven by analyzing its corresponding dif-

ferential equation in Appendix D. According to Eq. (66) it
follows ∂3φ0

α/∂η3 = −16/π2∂φ0
α/∂η, and thus the two inte-

grals on the left-hand side cancel each other. The remaining
terms read as

−
[
φ1

α

∂2φ0
α

∂η2

]η0
+

η0−

= 1

2

( −v0
n

mαβγαβ

− κ0

)
− ψα (μ0) − ψβ (μ0)

2γαβ

.

(74)

In the case of a well potential, the ends of the inner region
η± are ±∞, respectively, and the remaining bracketed term
vanishes, due to the matching conditions, which require φ1

α

to assume a value of zero at the ends. Choudhury et al. [15]
treated the obstacle case in the same manner, while tacitly
assuming that φ1

α has to vanish at the endpoints. However,
no argument is given that provides a condition to validate this
assumption. Due to the different treatment in the current work,
the boundary conditions from Eqs. (40) and (41) are utilized
to evaluate the nature of the bracketed term more rigorously.
As outlined in Appendix C, the Taylor expansions for these
equations provide a set of conditions for each order of ε.
According to Eq. (C14), the following relations are obtained
at the current order:

0 = ∂φ0
α

∂η

∣∣∣∣
η0+

η1
+ + φ1

α (η0
+), (75)

0 = ∂φ0
α

∂η

∣∣∣∣
η0−

η1
− + φ1

α (η0
−). (76)

Inserting ∂φ0
α/∂η|η0±

= 0 yields the required condition, which
validates the following statement [Eq. (74)]:

ψα (μ0) − ψβ (μ0) = − v0
n

mαβ

− γαβκ0, (77)

which is the sought relation between curvature and the grand-
potential driving force. Note that in the absence of the latter,
which corresponds to two chemically identical phases (known
as grains), a curvature-driven boundary migration of the form
v0

n = −mαβγαβκ0 is recovered by the effect of the Allen-Cahn
(phase-field) equation. However, the general case may give
the impression that the sharp-interface Gibbs-Thomson effect
cannot be recovered since Eq. (77) differs significantly from
Eq. (27). Moreover, there is a fundamental difference in the
philosophies of the current model and the sharp interface
theory that existed right from the beginning. This is that while
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Sec. III dealt with pure substances, the developed phase-field
model pertains to alloys. Indeed, the current formulation is not
directly a model for surface self-diffusion in a unicomponent
solid-vapor system. That said, it is defended that it is its
counterpart for multicomponent alloys with a striking level
of exactness. Second, with a slight reinterpretation of various
terms, it readily handles the pure substance case as well. The
first of the above can be realized by considering the equi-
librium case vn = 0. Then differentiating the appropriately
reduced Eq. (77) gives

∂κ0

∂μ0
= γ −1

αβ

[
∂ψβ (μ0)

∂μ0
− ∂ψα (μ0)

∂μ0

]
. (78)

Since ∂ψα (μ0)/∂μ0 = −cα ∀α, one obtains

∂μ0

∂κ0
= γαβ

cα (μ0) − cβ (μ0)
. (79)

This is precisely the result Eq. (A7) derived from a more
general Gibbs-Thomson condition outlined in Appendix A.

The second point can be seen by highlighting small shifts in
the chemical potential. Therefore, the chemical driving force
ψα − ψβ is expanded as a deviation from the equilibrium

ψα (μ) − ψβ (μ) = (μ − μeq )[cβ (μeq ) − cα (μeq )]

+ O[(μ − μeq )2], (80)

which yields

μ0 − μeq =
γαβκ0 + v0

n
mαβ

cα (μeq ) − cβ (μeq )
+ O[(μ0 − μeq )2]. (81)

This is the much popular generalized Gibbs-Thomson relation
for binary systems. Here please note the marked similarity
between Eq. (81) and the chemical potential of the sharp inter-
face, according to Eq. (36). If we treat [cα (μeq ) − cβ (μeq )]μ0

as the chemical potential in Eq. (36), equivalent relations are
obtained in the sense that γαβ represents the physical interfa-
cial energy γs and mαβ denotes the physical mobility of the
interface ms. Therefore, the kinetic term v0

n/mαβ reflects the
limited attachment kinetics of the interface, imprinted through
the phase-field evolution, which becomes evident from the
sharp interface law [21]. The additional composition differ-
ence in the denominator results from the treatment of a binary
incompressible system, instead of a unary compressible one,
as discussed in Appendix A. Further details are discussed in
Sec. VII C.

To study the nature of η1
±, the derivative boundary condi-

tions [Eq. (42)] are utilized. By analogously expanding the
powers of ε to Eq. (C14), at the first order, they read as

0 = ∂2φ0
α

∂η2

∣∣∣∣
η0+

η1
+ + ∂φ1

α

∂η

∣∣∣∣
η0+

, (82)

0 = ∂2φ0
α

∂η2

∣∣∣∣
η0−

η1
− + ∂φ1

α

∂η

∣∣∣∣
η0−

, (83)

which results in

η1
± = −

∂φ1
α

∂η

∣∣
η0±

∂2φ0
α

∂η2

∣∣
η0±

. (84)

Once again, for consistency, it is important to show that ∂φ1
α

∂η
|
η0±

is bounded, which is done in Appendix D.

2. Chemical potential

The chemical-potential equation at the order ε−2 reads as

∂

∂η

(
M0 ∂μ1

∂η

)
+ ∂

∂η

(
M1 ∂μ0

∂η

)
+ M0κ0

∂μ0

∂η
= 0. (85)

Since ∂μ0

∂η
= 0, only a single term remains. Furthermore,

J1(η) = M0∂μ1/∂η. Thus, we may integrate along the normal
direction, to obtain

J1(η) = M
(
φ0

α

)∂μ1

∂η
= C. (86)

Again, boundary conditions are required to obtain an appro-
priate value for C. The flux boundary condition next to the
lowest order [Eq. (C28)] reads as

∂J0

∂η

∣∣∣∣
η0±

η1
± + J1(η0

±) = 0. (87)

Since J0(η) = 0, it further simplifies to J1(η0
±) =

[M0∂μ1/∂η]η0± = 0. Accordingly, J1(η) = C = 0, and μ1

is independent of η, which implies that J2(η) = M0∂μ2/∂η.

F. Next order

1. Chemical potential

At the order 1/ε, Eq. (65) reads as

0 = ∂

∂η

(
M0 ∂μ2

∂η
+ M1 ∂μ1

∂η
+ M2 ∂μ0

∂η

)

+ M0κ0
∂μ1

∂η
+ M0 ∂2μ0

∂s2
+ ∂M0

∂s

∂μ0

∂s

+
(

M1κ0 − M0ηκ2
0 + v0

n

∂c

∂μ

∣∣∣∣
φ0

α,μ0

)
∂μ0

∂η

+ (cα (μ0) − cβ (μ0))v0
n

∂hα

(
φ0

α

)
∂η

. (88)

Inserting ∂μ0

∂η
= 0, ∂μ1

∂η
= 0 and ∂M0

∂s = 0, we obtain

0 = ∂

∂η

(
M0 ∂μ2

∂η

)
+ M0 ∂2μ0

∂s2

+ (cα (μ0) − cβ (μ0))v0
n

∂hα

(
φ0

α

)
∂η

. (89)

Integrating across the interface yields

0 =
[

M0 ∂μ2

∂η

]η0
+

η0−

+ M̄αβ

∫ η0
+

η0−
g
(
φ0

α

)
dη

∂2μ0

∂s2

+ (cα (μ0) − cβ (μ0))v0
n

∫ η0
+

η0−

∂hα

(
φ0

α

)
∂η

dη︸ ︷︷ ︸
−1

, (90)
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TABLE I. Values for the integral Ig ≡ ∫ η0+
η0−

g(φ0
α ) dη, depending

on the particular choice of g. � denotes the gamma function.

Mobility function g(φα ) Integral Ig

√
φα (1 − φα ) π/4

φα (1 − φα ) π 2/32
φ2

α (1 − φα )2 3π 2/512
φn

α (1 − φα )n π 3/2�(n + 1/2)/[4n+1�(n + 1)]

where the first bracketed term in the equation above is ob-
tained from the boundary conditions [Eq. (C29)]

0 = ∂2J0

∂η2

∣∣∣∣
η0±

(η1
±)2 + 2

∂J0

∂η

∣∣∣∣
η0±

η2
±

+ 2
∂J1

∂η

∣∣∣∣
η0±

η1
± + 2J2(η0

±) + 2v0
n[c(η0

±, ε = 0) − c±].

(91)

Substituting J0(η) = 0 and J1(η) = 0 results in

J2(η0
±) =

[
M0 ∂μ2

∂η

]
η0±

= v0
n[c± − c(η0

±, ε = 0)]. (92)

Since φ0
α (η0

−) = 1 and φ0
α (η0

+) = 0, the compositions ap-
proached from the interface reduce to c(η0

+, ε = 0) = cβ (μ0)
and c(η0

−, ε = 0) = cα (μ0), which leads to[
M0 ∂μ2

∂η

]
η0+

= v0
n[cβ (μ+) − cβ (μ0)], (93)[

M0 ∂μ2

∂η

]
η0−

= v0
n[cα (μ−) − cα (μ0)], (94)

where the bulk c± have been written in terms of the bulk
chemical potential.

The governing equation in the sharp interface limit there-
fore is found to be

v0
n =

M̄αβ
∫ η0

+
η0−

g
(
φ0

α

)
dη

cα (μ−) − cβ (μ+)

∂2μ0

∂s2
. (95)

Interestingly, this equation is consistent with the balance
law for an evolving surface [see Appendix B, Eq. (B4)].
Thereby the surface excess flux is identified to be js =
−sM̄αβ

∫ η0
+

η0−
g(φ0

α ) dη ∂μ0/∂s.

We introduce the quantity Ig ≡ ∫ η0
+

η0−
g(φ0

α ) dη, which is just

a nondimensional prefactor. For functions of the form g(φα ) =
φn

α (1 − φα )n, the resulting values of Ig are tabulated in
Table I.

Assuming that the bulk compositions do not differ strongly
from the equilibrium compositions, cα (μ−) − cβ (μ+) ≈
cα (μeq ) − cβ (μeq ) yields

v0
n ≈ M̄αβ Ig

cα (μeq ) − cβ (μeq )

∂2μ0

∂s2
. (96)

Substituting Eq. (81) and rewriting it with the handy definition
μ̄ ≡ [cα (μeq ) − cβ (μeq )]μ0 [μ̄, which has the same unit as μ

(J/m3)], results in the following set of equations:

v0
n ≈ M̄αβIg

[cα (μeq ) − cβ (μeq )]2

∂2μ̄

∂s2
, (97)

μ̄ ≈ μ̄eq + γαβκ0 + v0
n

mαβ

, (98)

valid for small deviations from the equilibrium. Since the
above equations take an equivalent form as the counterpart
of the sharp interface [Eqs. (35) and (36)], coupled motion by
surface diffusion and attachment kinetics is retrieved.

Furthermore, the rate constant for growth, dominated by
surface diffusion, is obtained as

B = M̄αβ Igγαβ

[cα (μeq ) − cβ (μeq )]2
, (99)

which is the sought coefficient to relate the physical and
model-specific timescale. According to Eq. (34), the charac-
teristic length scale for the attachment kinetics is expressed as
lc = √

B/(γαβmαβ ), in terms of the model parameters.
Often, it is desired to handle the case of infinite rather

than finite attachment kinetics. This can be achieved through
a slight modification of the model. Here the mobility mαβ

is no longer treated as independent of ε but is replaced by
mαβ = m̃αβ/ε, where m̃αβ is a constant. Accordingly, one
obtains infinite attachment kinetics in the sharp-interface limit
since limε→0 lc becomes zero. More technically speaking, the
first term inside the parentheses, in Eq. (70), which appears
instead at one higher order, can be dropped.

G. Higher-order contributions to the phase-field profile

According to the preliminary analysis, the choice of the
interpolation function hα does not alter the simulation result,
provided it meets the imposed criteria. Therefore, the user
has freedom to choose any suitable interpolation function that
provides ease of implementation or low computational costs.
Accordingly, the rather naive choice hα = φα may be deemed
appropriate. To test the validity of the derived equations, a
simulation of a small cylindrical particle (radius r = 2ε) is
performed until an equilibrium state is reached, as shown in
Fig. 1. The observed radial phase-field profile and the profile
of φ0

α [Eq. (68)] are shown in Fig. 2. Note that even in such an
artificially, strongly perturbed state, which is due to the large
interfacial width ε, a fairly small deviation of the simulation
equilibrium profile from the profile of φ0

α is observed. Despite
this naive approach, this demonstrates the stability of the in-
terface and reflects the absence of unwanted excess energy in
the current model. However, in zoomed regions of the profile,
in the vicinity of the bulk, small deviations are observed. The
corresponding reason may be identified from Eq. (70), where
the differential equation for φ1

α (η) depends on the particular
nature of hα . According to the ansatz [Eq. (55)], and given
a finite interfacial width, the contribution of the interpola-
tion function to the phase-field profile becomes increasingly
important. Since a finite interface width and a rather small
particle are analyzed, the inconsistencies may be related to
the particular form of the higher-order solutions φ1

α (η), φ2
α (η).
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FIG. 1. Equilibrium phase field φα , for a cylindrical particle of
radius r, with a relatively large interfacial width (ε/r = 1/2) in the
current model. The solid lines indicate the isolines of the phase field,
and the dashed line represents a radial cross section of the interface.

Therefore, further analysis is performed in the following, to
identify higher-order corrections in the phase-field profile.

Since each interpolation function has to be treated individ-
ually from now on, presenting the solution at higher orders in
a generic form becomes a tedious task. Therefore, this section
exemplarily focuses on the particular choice hα = φα . The
differential equation for φ1

α (η) can now be written as

∂2φ1
α

∂η2
+ 16

π2
φ1

α =
( −v0

n

mαβγαβ

− κ0

)(
∂φ0

α

∂η
+ 1

2

)
. (100)

FIG. 2. Simulated equilibrium phase-field profile φα along the
radial direction (dashed line in Fig. 1), rescaled in terms of η (solid
symbols). The profile of φ0

α is shown as a solid line.

By defining a ≡ −v0
n/(mαβγαβ ) − κ0, the general solution to

this differential equation reads as

φ1
α = a

[
π2

32
+

(
K1 − η

4

)
sin

(
4

π
η

)
+ K2 cos

(
4

π
η

)]
,

(101)

where K1 and K2 are two undetermined constants. From the
condition φα (η = 0) = 1/2, it follows that K2 = −π2/32.
Equations (75) and (76) provide the boundary conditions
φ1

α (η0
±) = 0 at either end, to obtain K1 = 0. The first-order

correction of the phase-field profile then writes as

φ1
α = a

[
π2

32
− η

4
sin

(
4

π
η

)
− π2

32
cos

(
4

π
η

)]
. (102)

At the first order η1
±, the shift of the endpoints is found by first

taking the derivative

∂φ1
α

∂η
= a

[(
π

8
− 1

4

)
sin

(
4

π
η

)
− η

π
cos

(
4

π
η

)]
(103)

to obtain ∂φ1
α/∂η|η0±

= ±a(π/8 − 1/4). Finally, substituting

∂φ1
α/∂η|η0±

and ∂2φ0
α/∂η2|η0±

= ±8/π2 into Eq. (84) yields the
finite values

η1
+ = η1

− = aπ2

32

(
1 − π

2

)
. (104)

Therefore, the first-order correction of the phase field has
been thoroughly presented. To conserve the boundary condi-
tions at the order ε2, we obtain [see Eq. (C15)]

0 = ∂2φ0
α

∂η2

∣∣∣∣
η0±

(η1
±)2 + 2

∂φ1
α

∂η

∣∣∣∣
η0±

η1
± + 2φ2

α (η0
±), (105)

which, by substituting Eq. (84), simplifies to

φ2
α (η0

±) = −1

2

∂φ1
α

∂η

∣∣∣∣
η0±

η1
±. (106)

Interestingly, the second-order phase-field correction does not
vanish at the zeroth-order endpoints, but takes the finite values

φ2
α (η0

±) = ±φ2
α (η0

+) = ±a2π2

256

(
π

2
− 1

)2

. (107)

To identify the contribution of the second-order correction, the
phase-field equation at the order ε, which reads as

∂2φ2
α

∂η2
+ 16

π2
φ2

α = a
∂φ1

α

∂η
− v1

n

mαβγαβ

∂φ0
α

∂η
+ φ̊0

α

mαβγαβ

− ∂2φ0
α

∂s2

+ ηκ2
0
∂φ0

α

∂η
+ μ1 cβ (μeq ) − cα (μeq )

2γαβ

,

(108)

is analyzed, where the last term appears in an expanded form,
according to Eq. (80). Since φ̊0 = 0 and ∂2φ0

α/∂s2 = 0, both
terms can be neglected subsequently. Applying the same steps
again, i.e., multiplying by ∂φ0

α/∂η and integrating, yields

μ1 = v1
n

mαβ[cα (μeq ) − cβ (μeq )]
. (109)
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Defining b ≡ v1
n/(mαβγαβ ), the solution of Eq. (108), which

is subject to the boundary conditions (107), reads as

φ2
α = ps(η) sin

(
4

π
η

)
+ pc(η) cos

(
4

π
η

)
− π2b

32
, (110)

ps(η) ≡ 1

512
[a2(2π2 − 2π3 + π4 − 32η2)

+ 128bη + κ2
0 (π4 − 64η2)], (111)

pc(η) ≡ π

64

[
2πb + (

(1 − π )a2 − 2κ2
0

)
η
]
. (112)

For a stationary profile (vn = 0, a2 = κ2
0 , b = 0), it simplifies

to

φ2
α = κ2

0

256

[
(π2 − π3 + π4 − 48η2) sin

(
4

π
η

)

−4π (1 + π )η cos

(
4

π
η

)]
. (113)

The shift of the interfacial endpoints η±, induced by the
second-order correction, is expressed as follows, by the use of
the boundary condition (42), at the proper order (the deriva-
tion is outlined in Appendix C):

η2
± = −

1
2

∂3φ0
α

∂η3

∣∣
η0±

(η1
±)2 + ∂2φ1

α

∂η2

∣∣
η0±

η1
± + ∂φ2

α

∂η

∣∣
η0±

∂2φ0
α

∂η2

∣∣
η0±

, (114)

which, for the stationary case, results in

η2
± = ±κ2

0
3π4

1024
. (115)

Including this term in the expanded form, we obtain up to
order O(ε2):

η+ = π2

8
+ εκ0

π2

32

(
π

2
− 1

)
+ ε2κ2

0
3π4

1024
, (116)

η− = −π2

8
+ εκ0

π2

32

(
π

2
− 1

)
− ε2κ2

0
3π4

1024
. (117)

It is interesting to note that the amount of perturbation in
the stationary state is just a function of εκ0, i.e., the ratio of
the interfacial width to the radius of curvature. This reflects
the common understanding that the length scale of the prob-
lem must be much larger than the interfacial thickness, in
order to ensure the validity of the sharp interface limit.

In Fig. 3 the derived solutions for φα are shown up to the
second order, in addition to the simulated profile. Now the
deviations from the profile of φ0

α are very well explained by
taking the higher-order corrections φ1

α and φ2
α (dashed and

solid lines, respectively) into account. In contrast to the right
end (η > 0), where the observed profile clearly overshoots
the sharp-interface profile, the interfacial endpoint of the
simulated profile at the left end (η < 0), where φα approaches
unity, matches much better with the zeroth-order profile. By
inspecting Eqs. (116) and (117) correspondingly, the follow-
ing values are obtained for the shown setup (εκ0 = 0.5):

η+ − η0
+ ≈ 0.1593, (118)

η− − η0
− ≈ 0.0167. (119)

FIG. 3. Simulated equilibrium phase-field profile φα , along the
radial direction (dashed line in Fig. 1), rescaled in terms of η (points).
The profiles derived as in the asymptotic analysis are addition-
ally shown as lines. The simulation result almost perfectly matches
the derived profile, including the second-order corrections in ε. The
value of κ0 = 1/r is calculated from the isoline φα = 0.5 of the
simulation data (see Fig. 1).

Since the deviation for the left side (η− − η0
−) is much smaller

than the deviation for the right side, the theoretical treatment
successfully predicts the observed behavior.

In this way the simulation result supports the validity of the
derived equations, which bases on the correct incorporation of
boundary conditions (Appendix C).

V. THERMAL GROOVING

A. Sharp-interface treatment

Pioneering work in the field of thermal grooving goes
back to Mullins [19,105], where the formation of a groove
at the grain-boundary intersection with a free surface was
studied theoretically, under a variety of possible mass-
transfer mechanisms (surface diffusion, volume diffusion,
evaporation-condensation). Following the analysis of Mullins,
thermal grooving has been studied experimentally for cop-
per [106,107], NiAl [108], tungsten [109–114], and alumina
and magnesia [115], as well as many others. Experimentally,
the study of thermal grooves is appealing, due to several
reasons. It allows the ascertainment of diffusivities and the
underlying diffusion mechanism, by analyzing the temporal
behavior of the groove geometry, as well as the determi-
nation of interfacial energy ratios, by the measurement of
triple-junction angles at the groove root. Furthermore, thermal
grooves may interact with a moving grain boundary, as studied
in [116–121], for example, which may lead to a drag effect,
acting as a possible source to hinder grain growth. In order to
find an analytical solution for grooving governed by surface
diffusion, a so-called small-slope approximation was applied
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in the work of Mullins [19]. Accordingly, curvature depends
only on the second derivative of the groove profile

κs ≈ −y′′, (120)

under the assumption that |y′| is negligibly small. Based on
Eq. (31), a differential equation could be derived as

ẏ = −By′′′′ (121)

and could be solved, subject to the initial condition of a flat
surface

y(x, 0) = 0, (122)

using the Laplace transform. Boundary conditions that read

y′(0, t ) = m, (123)

y′′′(0, t ) = 0, (124)

were applied, where m is the slope of the groove at the
triple junction. A grain boundary intersects the surface at the
triple junction (per definition at x = 0), which corresponds to
the root of the groove. In terms of this slope, the equilibrium
angle θ may be expressed as

m = tan θ, (125)

while from the balance of the forces at the triple junction [97],
the following relations hold:

θ = arcsin
γGB

2γs
, (126)

m =
[

4

(
γs

γGB

)2

− 1

]− 1
2

. (127)

Moreover, it was found that the temporally and spatially de-
pendent solution can be written in a time-independent form,
z(u), using

y(x, t ) = m(Bt )
1
4 z(u). (128)

The rescaled x coordinate u was introduced as

u ≡ x

(Bt )
1
4

, (129)

and thus the groove profile behaves self-similarly, while the
size of the groove temporally follows a power law with the ex-
ponent n = 1/4. Moreover, the particular groove shape obeys
the following ordinary differential equation:

z′′′′ − 1
4 uz′ + 1

4 z = 0, (130)

where the spatial differentiation is performed with respect to
u. The solution was stated as a power series

z(u) =
∞∑

n=0

anun, (131)

with the coefficients chosen as tabulated in Table II. In
Robertson’s later extension of the work of Mullins, [20], the
groove profile was solved numerically, without the necessity
of any small-slope approximation. It was shown that the tem-
poral development of the groove for finite slopes follows the
same temporal law as stated in Eq. (128). The change in the
equations, which is due to the finite surface slopes, is reflected

TABLE II. Polynomial coefficients for the time-independent so-
lution z(u),for surface diffusion, by Mullins [19]. � represents the
gamma function.

n an

0 −1√
2�( 5

4 )

1 1
2 −1

2
√

2�( 3
4 )

3 0
�4 an−4

n−5
4(n−3)(n−2)(n−1)n

only in a more complex form of the differential equation for
z(u), which rewrites to

z′′′′ + 1

4
[(z − uz′)(1 + m2z′2)2]

− m2z′′

1 + m2z′2

[
10z′z′′′ + 3z′′2(1 − 5m2z′2)

1 + m2z′2

]
= 0. (132)

In the limit m → 0, it is easy to see that Eq. (132) becomes
equivalent to Eq. (130). As a result, a unique solution, z(u),
is obtained for each particular value of m, due to the solution
approach, which, however, cannot be presented in an exact
analytical form, as given by the power series in Eq. (131). The
numerical results were presented in a graphical form, which
makes it difficult to make an exact comparison with the phase-
field results. In order to obtain the correct groove shapes, z(u),
we repeated the process of numerically solving Eq. (132) for
various values of m, subject to the boundary conditions

z′(0) = 1, (133)

z′′′(0) = 3m2 z′′2(0)

1 + m2
, (134)

z′′(40) = 0, (135)

z(40) = 0, (136)

which are equivalent to the boundary conditions stated in
the original publication of Robertson [20]. Despite the sole
difference that we use a cutoff at u = 40, instead of u = 10,
to apply the boundary conditions at the right end of the groove
(which in exact form would be applied at u → ∞). We apply
an iterative finite-difference scheme, for the discretization of
all derivatives, using central differences up to the order of
four, with a grid size of �u = 0.02. The Newton-Raphson
method is applied by starting from an initial guess, z0, before
solving several subiterations until the solution converges and
Eq. (132) is properly satisfied. At either end of the calculation
domain, two boundary cells are updated automatically dur-
ing each Newton-Raphson subiteration, to guarantee that all
boundary conditions [Eqs. (133)–(136)] are satisfied.

The obtained groove geometries are depicted in a rescaled
coordinate system (Fig. 4). Note that, as desired, the nu-
merical solution for θ = 0 coincides with the analytical
solution in the small-slope framework. Furthermore, a variety
of groove shapes is obtained by employing the numerical
scheme. However, despite the quantitative differences, the
qualitative behavior of grooving does not become significantly
different. Specifically in the vicinity of the triple junction,
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FIG. 4. Numerically solved groove profiles, z(u), under surface
diffusion. Seven profiles are shown for different values of m = tan θ ,
calculated in a finite difference scheme, according to [20]. An ad-
ditional curve of the analytical solution by Mullins [19] is shown,
which perfectly coincides with the numerical solution for θ = 0◦.

deepening is observed, while a hill forms and a global maxi-
mum is assumed, with an increasing distance from the root.
In contrast to the volume diffusion-governed grooving in
the small-slope framework [105], as shown in Fig. 5, the
characteristic features of the grooves, caused by surface diffu-
sion, are apparent. First, the temporal behavior during volume
diffusion-governed growth is fundamentally different, since
the size of the groove follows a different temporal power law
with the exponent 1/3. Therefore, the rescaling in Fig. 5 is ap-
plied with t1/3, while A′, similar to B, represents the physical
rate constant of the bulk diffusion. Henceforth, a growth with
an exponent of 1/4 is deemed characteristic for thermal groov-
ing by surface diffusion. Furthermore, in all surface diffusion
grooves, following the hill, a characteristic dip is formed,
corresponding to a local minimum in the groove shape. In
volume diffusion grooves, such a dip is absent, whereas the
groove slowly converges from above towards the original flat

FIG. 5. Analytical groove profile for volume diffusion-governed
grooving in the small-slope framework [105].

γαδ γβδ

γγγγγγγγαβββααβββαααββ

Nx

Ny

ααααααα ββββββββββββ

δ

FIG. 6. Initial setup used for the simulations performed in this
work.

position. This difference serves as an additional indicator to
differentiate between surface and volume-diffusion governed
grooving.

B. Phase-field simulation

In the current section, a system comprising three order
parameters, φα , φβ , and φδ (N = 3), is considered, while a
single composition field (K = 2) serves to incorporate diffu-
sional transport into the system, where composition-related
subscripts are omitted accordingly. A simulation setup as de-
picted in Fig. 6 is utilized. The two-dimensional simulation
domain is symmetrically and vertically split into two respec-
tive regions of different composition, cα

eq = cβ
eq = cS

eq and cδ
eq.

The area with the lower composition cδ
eq belongs to a single

vapor phase δ, whereas the area with the higher composition
represents a metallic solid that undergoes thermal grooving.
The notion of a composition for a vapor-solid system is dis-
cussed in Appendix A 3. The solid contains two equally sized
rectangular grains, α and β, which are separated by a common
grain boundary with the interfacial energy γαβ = γGB. The
utilized parameter set is tabulated in Table III. To keep the
results general, all quantities are expressed in an arbitrary unit
system. Here uE ≡ λE J is an energy unit with a dimensionless
prefactor λE , where J denotes Joule. Similarly, ul ≡ λlm and
ut ≡ λt s can be written by dimensionless quantitites, λl and
λt , in terms of their SI counterparts. The nondimensional
factors can be affixed by assigning the properties of a certain
material to the values in Table III.

Equal interfacial energies (γαδ = γβδ = γs) and a common
interfacial diffusivity prefactor, M̄αδ = M̄βδ , are assigned to
both horizontally aligned phase boundaries, respectively. In
order to neglect bulk diffusion, the parameters Mα = Mβ =
Mδ were chosen to be zero. A simulation domain with a width
of Nx = 2000 cells and a height of Ny = 200 cells has been
chosen. Periodic boundary conditions are applied in the x
direction, so that two boundary grooves form at a distance
of half the width of the domain. In the y direction, zero
Neumann (no-flux) boundary conditions are applied to fix the
position of the grain boundary. The discretization spacing was
chosen to be �x = �y = 0.25ul . To minimize the effect of
the attachment kinetics, the boundary mobilities are chosen
as mαβ = mαδ = mβδ = 1 u4

l /(uE ut ). To verify that the attach-
ment kinetics are subdominant, it should be noted that the
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TABLE III. Parameter set utilized for the simulations performed
in the current work.

Parameter Symbol Value(s)

Equil.-comp. left cα
eq

a 0.9

Equil.-comp. right cβ
eq

a 0.9

Equil.-comp. vapor cδ
eq 0.1

Interpolation function hα (φ) φα

Surface diff. mobility function g(φα, φβ ) 4/π
√

φαφβ

Surface diff. prefactor left M̄αδ 0.1
u6

l
uE ut

Surface diff. prefactor right M̄βδ 0.1
u6

l
uE ut

Grain boundary diff. prefactor M̄αβ 0
Bulk diffusion mobilities Mα,β,δ 0

Interface mobility (left) mαδ
b 1

u4
l

uE ut

Interface mobility (right) mβδ
b 1

u4
l

uE ut

Interface mobility (GB) mαβ 1
u4

l
uE ut

Surface energy (left) γαδ
c 1 uE

u2
l

Surface energy (right) γβδ
c 1 uE

u2
l

Grain boundary energy γαβ
d 0.5 . . . 1.875 uE

u2
l

Thermodynamic prefactor A 50 uE
u3

l

Interfacial thickness parameter ε 2ul

Grid spacing �x = �y 0.25ul

aEquivalent to cS
eq.

bEquivalent to ms.
cEquivalent to γs.
dEquivalent to γGB.

length scale, at which the attachment kinetics operate, is much
smaller than the interface width (lc << π2ε/4). This can be
evaluated through Eq. (99) and lc = √

B/(γsms). Inserting the
values from Table III yields lc ≈ 0.4ul << π2ε/4 ≈ 5ul .

C. Volume conservation

To model phase transformation, quantitative driving forces
are introduced in various ways. Particularly, the incorporation
of CALPHAD data is achieved either by parallel computing
or by employing a linearization scheme [122–124]. What
is different for these direct techniques is the fact that the
quantitative data can be introduced through a numerical ap-
proximation [78,87,93]. Accordingly, the Gibbs free energy
of a multicomponent phase α is expressed as

Gα =
K−1,K−1∑

i< j

Aα
i jcic j +

K−1∑
i

Bα
i ci + Cα, (137)

where the coefficients Aα
i j , Bα

i and Cα are determined appro-
priately to corroborate the CALPHAD data. Moreover, the
accuracy of the coefficients is verified through the Newton-
Raphson technique. Assuming that the molar volumes (Vm)
of the constituent phases are equal, the Gibbs free energy is
transformed to Helmholtz free energy, through the relation
f α = Gα/Vm.

By incorporating the CALPHAD data through Eq. (137),
a chemical equilibrium can be established between the

phases, by assigning equilibrium compositions. Since the
grand potentials of the different phases are equal in chemical
equilibrium, the driving force for any phase transformation
becomes insignificant. By assigning equilibrium compositions
to the phases, despite any morphological change, induced by
the interface contribution, the volume fraction of the con-
stituent phases can be preserved [94].

In order to treat the material equivalently to the sharp inter-
face description in the following simulations, the free energies
for each phase α ∈ {α, β, δ} are taken as

fα (c) = A
(
c − cα

eq

)2
, (138)

where A is a parameter which controls the strength of the
immiscibility of phases with different equilibrium composi-
tions cα

eq. In the asymptotics, an approximate relation of the
shift of the chemical potential was obtained and included in
the derivation [Eq. (81)]. The advantage of a pure parabolic
expression is that the chemical potential in Eq. (81) remains
exact for arbitrary deviations from the equilibrium. This guar-
antees the accuracy of the simulation, when benchmarked in
conjunction with the sharp interface solution.

On the other hand, as the thermodynamic parameter A does
not appear in the asymptotics, its value remains free of choice
to the user in the sharp interface limit. However, during the
simulation, a small value of A may lead to a substantial loss
of volume. This apparently corresponds to the fact that the
simulation is confined to a finite interface width and that
the volume occupied by the interface remains nonzero. To
guarantee sufficient conservation of volume in the following
simulations, a value of A = 50uE/u3

l was chosen.

D. Angle measurement

In deriving the analytical shape of the groove, a boundary
condition was employed in terms of the equilibrium angle at
the root. Thus, it is necessary to validate whether the dihedral
angles are correctly reproduced in the profiles obtained from
phase-field simulations. Additionally, certain geometrical fea-
tures are expected from theory, such as the depth-to-width
ratio d/w and the width-to-height ratio w/h. From the isoline
φδ = 0.5, the point with the maximum y coordinate deter-
mines the position of the groove peak, as depicted in Fig. 7.
Moreover, the coordinates of the groove root are determined
by finding the intercept of sixth-order polynomial fits at either
side of the groove. The slope at the groove root, caused by the
polynomial fits, serves to determine the equilibrium angle θ .
It should be noted that in the sharp interface theory, the shape
was determined only on one side of the GB, when invoking the
symmetry of the profile about the root. Contrarily, phase-field
simulations require to model the complete groove profile with
a finite GB width. As a consequence, the profiles do not meet
at a sharp, but rather blunt point at the root, which is just an
artifact of the diffuse interface formalism. Therefore, while
fitting the profiles with a polynomial, the points corresponding
to the region of the triple junction are not taken into account.

VI. RESULTS

To quantitatively evaluate the temporal behavior of groov-
ing, a comparative study is performed. During the analysis,
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FIG. 7. Measurement of the groove dimensions and equilibrium
angle θ at the groove root, by sixth-order polynomial fits (solid lines)
to the isoline φδ = 0.5 (closed symbols). Points shown as transparent
symbols are excluded from the fits.

both the analytical solution for small slopes [19] and the nu-
merical solution for finite surface slopes [20] are considered.
Since the phase-field model does not include any small-slope
approximation, simulation results are expected to reproduce
the fully nonlinear solution. While the asymptotic treatment
was restricted to a two-phase system, the applicability of
the multiphase model is analyzed for varying triple-junction
angles.

First, the features of the groove geometry are analyzed.
Hereby, the derived rate constant [Eq. (99)] is tested by ap-
propriately analyzing the widening of the groove. Second, the
chemical potential evolution is discussed extensively, and its
behavior in the normal and tangential direction is explained
in detail. Herein, the validity of the derived Gibbs-Thomson
relation is to be verified through Eq. (81). Last, an error
analysis is performed to study the interface width dependence
of the model.

A. Groove geometry

The temporal evolution of the groove surface for a thermal
groove with equivalent interfacial energies (γGB/γs = 1) is
shown in Fig. 8. The morphological evolution is apparently
consistent with the theoretical prediction. Starting from a flat
surface y = 0, at t = 0 (Fig. 6), a deepening of the groove
is observed in the vicinity of the grain-boundary to surface
intersection (x = 0). Further away from the triple junction,
the surface smoothly forms a hill region on both sides. Ad-
ditionally, a small valley is formed, where the position of the
interface lies below y = 0. Finally, the original flat position is
approached. The groove subsequently grows, retaining these
geometrical features, while the growth rate decays with time.
Furthermore, the groove profiles are seemingly self-similar
and independent of time.

According to Eq. (99), the rate constant, expressed with
the values given in Table III, evaluates to B = 0.15625u4

l /ut .
The self-similarity of the growth is visualized by plotting sub-
sequent groove geometries in a rescaled coordinate system,

FIG. 8. Simulational groove surface (φδ = 0.5 isoline) for
γGB/γs = 1, at different times. Early, intermediate, and late times
correspond to t = 1.5 × 104ut , t = 9 × 104ut , and t = 2 × 105ut ,
respectively.

where both axes are scaled by the factor 1/(Bt )
1
4 . The corre-

sponding and appropriately scaled plot from Fig. 8 is shown
in Fig. 9. Along with the multiphase-field geometries, the
profiles of the sharp interface solutions, considering small and
finite slopes, are included as dashed lines. First, the groove
geometries of the multiphase-field model (MPF), which are
shown as solid lines, at different times, almost perfectly re-
duce to a single curve. Therefore, the self-similarity of the
growth indicates surface diffusion to be the dominant mode of
the mass transfer. While the overall agreement of the analyti-
cal solution in the small-slope framework and the simulated
profile is deemed acceptable, appreciable discrepancies are

FIG. 9. Evolution of the groove surface for γGB/γs = 1, per-
formed at the same times as in Fig. 8, in rescaled coordinates for the
proposed multiphase-field model (MPF) and according to Mullins
[19] and Robertson [20]. The rescaling is applied, with the value of
B being calculated according to Eq. (99).
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FIG. 10. Characteristic groove dimensions in the final state, ob-
tained from the multiphase-field simulations (closed symbols) and
according to the theory in [19,20], as the grain boundary energy is
varied. The theoretical triple-junction angle θ is expressed through
Eq. (126).

visible at the groove root and close to the maxima of the
grooves. By taking the fully nonlinear numerical solution into
account, a much better agreement is found. Therefore, the ob-
served deviation can reasonably be attributed to the limitations
of the small-slope approximation.

To study the behavior of the groove growth for a set
of triple-junction angles, several simulations with varying
grain boundary energy have been performed. Subsequently,
in addition to the triple-junction angle, characteristic proper-
ties of the groove geometry, namely, the depth-to-width and
width-to-height ratios, have been ascertained. Each of the out-
lined theoretical treatments predict a clear correlation between
these properties and the ratio between the grain boundary and
the surface energies. In Fig. 10 the resulting relationships from
the small-slope approximation and the finite-slope solution
are respectively depicted as dashed and solid lines, while
the triple-junction angle is plotted by evaluating Eq. (126).
Additionally, the measured groove geometries in the final state
are shown as solid symbols in Fig. 10. In the upper sub-
plot, a monotonically increasing depth-to-width ratio (d/w)
with increasing γGB/γs is observed, according to theory. As
expected, the agreement of both the small-slope and finite-
slope grooves is eminently pronounced for small γGB/γs ratios
corresponding to a small triple-junction angle θ . While the
phase-field simulations reproduce the prescribed trend of the
depth-to-width ratio, the corresponding values apparently fol-
low the fully nonlinear treatment. In contrast to the d/w ratio,
the width-to-height ratio decreases with increasing γGB/γs,
which is shown in the centered subplot. Again, the simula-
tion results seemingly coincide with the desired interrelation.
The good agreement between theory and simulation is evi-
dently attributed to the fact that the triple-junction angle also

FIG. 11. Groove width w, as a function of time, (to the power
of 1/4) from a multiphase-field simulation at γGB/γs = 1.5 (solid
symbols) and according to theory [19,20] (dashed and solid lines,
respectively). For the theoretical curves, the value of B has been
calculated according to the derived formula [Eq. (99)].

follows the theoretical prediction (lower subplot). However,
as the grain boundary becomes large (γGB/γs > 1.75), a small
deviation is visible in the plot. While no thorough examination
is performed to clarify this discrepancy, one must bear in mind
that triple junctions become unstable when the ratio γGB/γs

approaches the value of 2 (which corresponds to m → ∞).
Therefore, the groove root has to become infinitely sharp,
which clearly shows a practical limitation of the diffuse inter-
face of finite thickness, introduced in the phase-field model.

To a certain extent, all comparative examinations in Fig. 10
rely on the self-similar behavior of the groove profile. As
shown in Fig. 8, the characteristic kinetics associated with
surface diffusion-governed thermal grooving are related to
the self-similarity through the appropriate scaling of the co-
ordinates. Apart from their indirect involvement in scaling,
the kinetics of thermal grooving have not been extensively
considered yet. To that end, the temporal change in the width
of the groove is plotted against the characteristic time t

1
4 , in

Fig. 11. For this illustration, the evolution of the system with
the interfacial energy ratio of γGB/γs = 1.5 is considered.

Although a linear prediction is provided by both sharp-
interface treatments, a disparity is observed between two
solutions, analogous to previous studies associated with
Fig. 10. However, asserting their numerical accuracy, the
outcomes of the present approach follow relatively absolute
the sharp-interface solution with the finite-slope treatment, as
shown in Fig. 11.

B. Chemical potential

In the asymptotic analysis, a constant chemical potential is
obtained in the normal direction of the interface [Eq. (81)].
A first benchmark is to check whether the chemical potential
is really constant along the normal direction in the interface.
Therefore, the chemical potential field in the vicinity of the
triple junction is shown for an early time in Fig. 12. The
interfacial region is highlighted by the isolines of the vapor
phase field φδ . Here the chemical potential along the surface
strongly varies from a large positive value at the triple junction
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FIG. 12. The chemical-potential field μ(x) (the unit uE/u3
l is omitted) at an early time t = 1.5 × 104ut , in a region close to the triple

junction (x = 0), for equal interfacial energies γGB = γs. The isolines of the chemical potential and the phase field of the vapor phase φδ are
superimposed. The arrows indicate the normal vectors on the isoline φδ = 0.5 and the dashed line represents a normal cross section of the
interface.

toward a near-zero value, far away from it. The isolines of
the chemical potential, which are strongly aligned along the
normal vectors, show that there is a negligible variation of
the chemical potential in the normal direction, both close
to the triple junction and far away from it. Therefore, the
qualitative behavior of the chemical potential in the simulation
is consistent with the presented asymptotic analysis.

Furthermore, bilinear interpolation is employed to calcu-
late the chemical potential and the phase field φδ in the normal
direction, at an arbitrary point close to the triple junction
(dashed line in Fig. 12), which is shown in Fig. 13. The
behavior of the chemical potential in the bulk is not treated
in the asymptotics and has not been discussed so far. First, it
is seen that the chemical potential far away from the interface
still fulfills the initial condition μ = μeq = 0, which indicates
that diffusion occurs only at the interface. Interestingly, the
chemical potential field in the bulk does not remain zero all
the time, but changes in regions where once was an interface.

Here it is observed that the chemical potential is continuous
at the receding side, due to its motion, but discontinuous
at the front. Another discontinuity exists in the bulk, which
corresponds to the initial flat position of the interface. The
existence of such jumps shows the absence of bulk diffusion
and the clear decoupling between the interface and the bulk
achieved here. In addition to the pronounced match of the
phase-field profiles from the simulation and the asymptotics,
the position of the interfacial endpoints apparently matches
the ones derived here (shown as dashed vertical lines), since
the transitions of the interface and the bulk appear at the
correct positions.

Through Eq. (81), the value of the chemical potential is
related to the curvature and motion of the interface. In the
current setup, we have chosen the mobility of the surfaces mαδ

and mβδ in such a way that the effect of the attachment kinetics
should be negligible, and thus the term with the interface ve-
locity is deemed insignificant. Hence the approximate relation
μ = γsκs/(ceq

S − ceq
δ ) is obtained, where the subscript s may

be replaced either by αδ or βδ. Note that the equilibrium
chemical potential μeq is simply zero for the current choice of
free energies. As the theoretical groove shape is known from
[20], the value of curvature can be calculated from Eq. (28),
given that the time t and the position x are known. By inserting
this into the relation above, the theoretical chemical potential
in the interface corresponding to the cross section highlighted
in Fig. 12 can be calculated. This value is shown in Fig. 13

FIG. 13. Chemical potential μ [purple (black)] and phase field
φδ [green (light gray)] across the interface (along the dashed line
in Fig. 12). r represents the signed distance from the center of the
interface (φδ = 0.5). The horizontally dashed line is the theoretical
chemical potential, according to the Gibbs-Thomson effect, calcu-
lated from the numerical sharp-interface solution [20], at the same
position (x taken from φδ = 0.5 intersection) and time.
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FIG. 14. Scale-invariant chemical potential μ(Bt )1/4, as a func-
tion of the rescaled x coordinate u = x/(Bt )1/4. The solid lines show
the chemical potential in the center of the interface (along the iso-
line φδ = 0.5) for phase-field simulations of varying γGB/γs ratios,
at early [purple (black), t = 1.5 × 104ut ], intermediate [teal (gray),
t = 9 × 104ut ] and late [green (light gray), t = 2 × 105ut ] times. The
dashed and dash-dotted lines are the theoretical curves, according to
the relation obtained in the asymptotics without and with small-slope
approximation, respectively.

as a dashed horizontal line. Here an excellent match is found,
which shows that the chemical potential in the interface is also
in quantitative agreement with the derivation.

To see that the value of the chemical potential matches
continuously along the tangential direction, rather than only
at a single point, chemical potentials are calculated along
the baseline φδ = 0.5 and are compared with their theoretical
counterparts. The corresponding chemical potentials, rescaled
in time as μ(Bt )1/4, to compensate the decay in curvature
with time, are shown in a single plot in Fig. 14, for three
different simulations and at different times. Note that only
the right side of the groove is shown, due to the symmetry.
It is seen that the rescaled chemical potential in the interface
is nearly invariant in time, when plotted against the dimen-
sionless length x/(Bt )1/4, which is also predicted from the
theory. Here the maximum chemical potential (and hence
curvature) is assumed at the triple junction (x = 0), which is
in agreement with both Mullins’ and Robertson’s solution.
Interestingly, even though the surface curvature is not well
defined in the region of the triple junction, no significant
deviation of μ is found for small x. The chemical potentials
using the small-slope approximation [19] are generally of
larger magnitude than the ones from the numerically exact
solution and simulation, which is particularly pronounced for
large γGB/γs ratios. It is observed that the chemical potential
curves from the simulation match best with Robertson’s so-
lution, and hence the chemical potentials in the interface are
overall consistent with both the sharp interface theory and the
asymptotic analysis.

C. Error analysis

In the asymptotics, the sharp-interface limit of the model
has been derived. In fact, these laws are exactly valid only for

TABLE IV. Absolute (Ea) and relative (Er) errors for various
simulations with different interface widths, at a late time t = 1.95 ×
105ut . The results for two different representations of the groove
surface, φδ = φβ and φδ = 0.5, are presented.

ε (ul ) �x (ul ) E
φδ=φβ
a E

φδ=φβ
r (%) Eφδ=0.5

a Eφδ=0.5
r (%)

2.0 0.125 0.000554 0.356 0.00485 3.12
2.0 0.25 0.00224 1.44 0.00532 3.42
3.0 0.1875 0.00122 0.783 0.00886 5.70
3.0 0.25 0.00152 0.976 0.00889 5.71
4.0 0.25 0.00218 1.40 0.0136 8.74
4.5 0.25 0.00203 1.31 0.0163 10.5
5.0 0.25 0.00357 2.30 0.0189 12.2
5.5 0.25 0.00413 2.65 0.0217 14.0
6.0 0.25 0.00568 3.65 0.0246 15.8
6.5 0.25 0.00700 4.50 0.0276 17.7
7.0 0.25 0.00851 5.47 0.0307 19.7
7.5 0.25 0.0102 6.54 0.0338 21.7
8.0 0.25 0.0120 7.73 0.0370 23.8
10.0 0.25 0.0210 13.5 0.0503 32.3
12.0 0.25 0.0324 20.8 0.0641 41.2
14.0 0.25 0.0460 29.6 0.0781 50.2
16.0 0.25 0.0618 39.7 0.0924 59.4

an interface of vanishing thickness. Consequently, a deviation
is expected for nonzero interface thicknesses. To investigate
the error of the model as a function of interface thickness,
thermal grooving simulations were conducted with varying
values for ε. It is important to note that small interface widths
require a high spatial resolution, because the ratio between
the interface width and the grid spacing (ε/�x), and hence
the number of grid points in the interface, should not be too
small. As a consequence, simulations at a low interface width
can become very costly. To keep the computational effort
small, the interface widths are increased rather than decreased,
starting from the standard choice ε = 2ul . Generally, the grid
spacing has been kept constant, and hence higher interface
widths are represented by more grid points in the interface.
This ensures that a possible error increase is related to the
model and not to the limitations of the discretization.

To quantify the error, L2 norms of the groove profile are
utilized in rescaled coordinates, u = x/(Bt )1/4 and z(u) =
y(u(Bt )1/4, t )/[m(Bt )1/4]. Accordingly, the quantity ||z|| ≡√

{∫ umax

0 [zR(u)]2 du}/umax is introduced, where zR(u) is the
numerically exact solution from Robertson [20]. Taking the
rescaled profile from the simulation zMPF(u), an absolute error

is defined as Ea ≡
√

{∫ umax

0 [zMPF(u) − zR(u)]2 du}/umax, and
the relative error reads as Er ≡ Ea/||z||. In the following, a
cutoff is chosen at umax = 8, so as to disregard the region of
a negligible variation of z. All simulations are performed at
equal interfacial energies (γGB/γs = 1) and the correspond-
ing value of the L2 norm from the sharp interface solution
constitutes ||z|| ≈ 0.1556. The corresponding errors of the
performed simulations are presented in Table IV. Two dif-
ferent representations of the surface are studied, which differ
only in the triple-junction region, namely, φδ = φβ and the
isolines φδ = 0.5. Note that the isoline φδ = 0.5 does not meet
the point φα = φβ = φδ = 1/3, which may be seen as the
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FIG. 15. Rescaled groove profiles from two different represen-
tations of the groove surface, at a high resolution (ε = 2ul , �x =
0.125ul ) and at a late time t = 1.95 × 105ut . Note the blunt in the
isoline φδ = 0.5, which is absent in the curve φδ = φβ . The sharp
interface solution from [20] is shown additionally.

center of the triple junction, whereas the other representation
does. Therefore, a blunt is absent in the isoline φδ = φβ (see
Fig. 15 for a visual impression). Consequently, the errors
Eφδ=φβ

a/r from this representation, listed in Table IV, are gen-
erally smaller than those of the isoline φδ = 0.5 (pertaining to
Eφδ=0.5

a/r ), which is especially pronounced for small interface
widths. At the standard resolution �x = 0.25ul , errors taking
the isoline φδ = 0.5 (Eφδ=0.5

a/r ) are increasing monotonically
with ε, as desired. Here the smallest achieved relative error at
ε = 2ul is about 3.5%. However, taking the errors of the other
representation into account, it is seen that Eφδ=φβ

a/r does not
converge properly for small interface widths. For a smaller ε,
errors show oscillations and an error increase is observed from
ε = 3ul to ε = 2ul . To check whether such an error increase is
related to the model or to the limitations of the discretization,
two simulations have been performed at a higher resolution.
Here the ratio between the interface width and the grid spacing
is kept identical to the case of ε = 4ul , as ε/�x = 16, which
results in �x = 0.125ul and �x = 0.1875ul (Nx and Ny are
increased so as to represent the same region), for ε = 2ul and
ε = 3ul , respectively. These values are included in Fig. 16, to
study the scaling of the error Eφδ=φβ

r with ε. By taking only the
high-resolution simulations into account (closed symbols), it
is observed that the error now increases monotonically (apart
from small residual oscillations). Therefore, the error at ε =
2ul and at lower resolutions is dominated by the discretiza-
tion. We think that this is mainly attributed to the shallow
geometry of the groove, which spans only a small number
of grid points in height and hence is prone to discretization
errors. Therefore, the choice of �x is not quite optimal, since
ε = 2ul and �x = 0.25ul are the standard combination in the
current document. Most of the error, visible so far, is probably
caused by the limited discretization. However, as the relative
error is estimated to be around two percent, the match with the
sharp-interface solution is held acceptable.

FIG. 16. The relative error between the phase field and sharp
interface solutions for simulations at small interface widths (values
tabulated in Table IV). The symbols represent the errors obtained
from the phase-field simulations, whereas the dashed line shows a
polynomial fit to the closed data points. For the fit, the open symbols
are not taken into account. The colored (grayish) symbols refer to
simulations at a higher resolution.

Finally, a polynomial fit and a power fit have been cal-
culated from the solid symbols in Fig. 16. Using the least
squares method, the polynomial fit writes as Eφδ=φβ

r ≈ a1ε +
a2ε2 + a3ε3, where the coefficients are found to be a1 =
0.13%/ul ± 0.14%/ul , a2 = −0.01%/u2

l ± 0.05%/u2
l and

a3 = 0.015%/u3
l ± 0.004%/u3

l . ul denotes the unit of length.
As can be seen in Fig. 16, the fit matches apparently well
with the data points. An additional fit reveals the order of
convergence in the shown interval Eφδ=φβ

r ≈ apε
n to be ap-

proximately superquadratic, as the found exponent is larger
than two (n = 2.67 ± 0.09, ap = 0.030%/un

l ± 0.005%/un
l ),

which also corresponds to the third-order polynomial term
a3ε3, dominant in most of the interval. For a smaller ε, the
linear and quadratic term become more dominant, and the
speed of convergence is decreased. This is consistent with the
fact that the recovered laws are correct up to the zeroth order
in ε.

VII. DISCUSSION

A. Freedom to choose a mobility function

In conventional Cahn-Hilliard-based surface-diffusion
models, a single order parameter serves the dual role of track-
ing the solute composition as well as imprinting capillarity
into the system, while separate phase and composition vari-
ables offer a clear decoupling of mass transport and interface
migration, in the current model. As demonstrated in the cur-
rent work, this provides the freedom to choose a particular
form of degenerate mobility function g(φ) (Table I). In con-
trast, the mobility function Mg(c) in a Cahn-Hilliard model is
written in terms of the concentration c. Since this function
is directly included in the evolution equation of the same
variable, the solution strongly depends on the combination
of the particular form of g(c) and on the corresponding po-
tential of well or obstacle type, as demonstrated in [44,45],
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which in turn may lead to an unwanted volume-diffusion
term. Additionally, the use of stabilizing functions or tensorial
mobility is not a requirement in the present model. However,
the efficiency of scalar and tensorial mobilities, in the context
of coupled second-order conservative and nonconservative
systems of equations, remains to be evaluated and is reserved
for a future investigation. As the underlying grand-potential
model was successfully extended to multiphysics (e.g., me-
chanics [89,90]), the current surface-diffusion model suits an
easy amplification in future applications as well.

B. Computational cost

A common construction in the Cahn-Hilliard-based models
is the use of a fourth-order differential equation. The presence
of a fourth-order equation, in contrast to the second-order
conservative and nonconservative coupled equations, intro-
duces a number of computational complexities. First, the
discretization of two compounded Laplacians increases the
computational cost significantly. Second, since an explicit
scheme is commonly used for time integration, a severe re-
striction, due to the CFL condition on the time step size �t ,
exists, which, on the one hand, scales with an exponent of
four (�x4), with the spatial discretization �x. On the other
hand, a scaling with a smaller exponent (�x2) is expected
in the present model, since only second-order equations are
solved. In the current model, an additional advantage of the
applied obstacle-type potential is that the system of equa-
tions restricts the evaluation of the governing equations to
the interfacial region. However, a detailed comparison of the
computational efficiency of Cahn-Hilliard-based models and
the present model is not considered in the current paper and
may be tackled in future works.

C. Gibbs-Thomson relation

The present model manages both coupled motion by
surface diffusion and attachment kinetics, as well as the
corresponding Gibbs-Thomson effect in the sharp interface
limit. Nevertheless, the derived Gibbs-Thomson relation only
approximately equals the sharp interface limit [Eq. (27)] for
a pure substance, which is usually exactly recovered (either
as a zeroth- or first-order correction of ω) in conventional
Cahn-Hilliard surface diffusion models. One may argue that
this is a limitation of the current model. However, as it turned
out, the obtained relation [Eq. (79)] captures all nonlinearities
for a binary system [Eq. (A7)], involved in a more general
Gibbs-Thomson condition. It is deduced that the current
model provides a more realistic treatment, given the correct
free energies f α of the material system at hand. On the other
hand, the governing equation (95) includes bulk compositions.
Therefore, the results of the current model are dependent on
the initial condition. This, however, is not an artifact of the
phase-field model, but is required to fulfill the mass balance
at the interface (see Appendix B). Mathematically, however,
the current model will reduce to the simple set of equations, if
the composition is fixed in the bulk, which can be achieved
in the limit ∂cα/∂μ → 0 ∀α, by choosing adequate free
energies f α .

A possible way of approaching the pure substance (unary)
case is to keep simple parabolic free energies, but making
the sharpness of the parabolas dependent on ε and setting
cα

eq to zero and unity, for the vapor and solid phase, re-
spectively. In this modification of the model, the factor A
in Eq. (138) is replaced by A = Ã/ε, where Ã is a positive
constant, which ensures that in the sharp interface limit, bulk
compositions remain at exactly zero and unity even when
shifts in the chemical potential occur. This is reflected in
no-flux boundary conditions instead of convective ones (cf.
Appendix C 2). This is attributed to the fact that, at lowest
order in ε, the phase-inherent compositions, which write now
as cα (ε) = cα

eq + εμ/(2Ã), reduce to the equilibrium values.
Higher orders (A = Ã/εn, n > 1) are also possible and should
lead to a stronger suppression of composition shifts as ε is
reduced. This, as it turns out, is in fact an advantage in contrast
to the existing well-potential Cahn-Hilliard models. There the
order of ε at which, analogously, the wells in the well potential
become sharper is fixed to maintain a finite interfacial width.
However, this detail of the models cannot be treated rigorously
without going beyond a sharp-interface analysis, and hence is
left as a possible future task.

A final objection could be the following: Even though the
forms of the sharp-interface Eqs. (35) and (36) for a pure
substance may be recovered with a reassignment, philosophy-
wise the current construction cannot be claimed to be a
phase-field model of surface diffusion in pure solids as it is
based on the grand-potential model, which is an alloy-specific
formulation. It is pointed out that instead of starting with an
alloy terminology and doing a mere remapping in the end,
one can start with reinterpreting the various quantities right
from the beginning as presented in Appendix A 3. Of course,
in such a depiction, compression is exclusively coupled to an
exchange of vacancies, and is thus incomplete, it might still be
claimed that our formulation can also be supposed as a model
for pure systems. Moreover, for an almost incompressible
solid that is usually considered in the sharp-interface theories,
this depiction becomes satisfactory.

D. Chemical potential profile

1. Across the interface

An important property of the current model is the con-
stancy of the chemical potential in the normal direction.
In fact, this point has also been mentioned in the work of
Amirouche et al. [73], where a similar model was employed.
There, in contrast to the current work, difficulties in recover-
ing the Gibbs-Thomson effect and a strongly varying chemical
potential in the interface were observed. The authors argued
that this probably has to do with a so-called breakdown of
locality. However, one of the major differences between the
two models is the utilization of a well-type potential in their
work. Hence, the equations derived here are not directly ap-
plicable. Moreover, no asymptotic analysis is available for the
model used in the study above. Thus, we can only guess what
may have caused the inconsistency. One possibility is that the
chemical potential may not tend to a normally constant profile
as interface width is tending to zero. If, on the other hand, it
turns out that a constant zeroth-order chemical potential can
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also be derived on the basis of a well potential, the conclusion
would be that the interfacial width was not chosen small
enough to operate appropriately in the sharp interface limit.
Accordingly, the contributions of the higher-order terms, μ1

and μ2, which much likely are not constant, may become
important. A study on interfacial width, as done in the cur-
rent work, might help to clarify the confusions regarding the
breakdown of locality. Furthermore, in contrast to the current
paper, small, but nonvanishing diffusivities are applied in the
work of Amirouche et al. It is much likely that this will not
drastically change the picture. However, it still is not answered
thoroughly enough and clearly deserves further attention.

In contrast to the chemical potential in the interface, the
role of the bulk chemical potential has not yet been discussed
in the current paper, which will be done in the following.

2. In the bulk

It was observed that the chemical potential in the bulk is
overwritten by the chemical potential in the interface, due to
the absence of bulk diffusion, and thereafter remains invari-
ant (see Fig. 13). A consequence of this is the existence of
discontinuities in the chemical potential. However, it is still
unclear whether the chemical potential is truly discontinu-
ous at the front, or whether it is only varying rapidly in a
small, but finite transition region (see Appendix E for more
details). Please note additionally that the concept of vanishing
diffusivities may be seen as a simplification, in a physical
perspective, since some tiny amount of residual diffusion does
probably always exist in any real bulk material. In such a
situation, the discontinuities might disappear to form a steep,
but well-defined chemical-potential profile at the transition
from interface to bulk. When inspecting the evolution equa-
tion of the chemical potential [Eq. (18)] for the bulk case
(M = 0), it should not evolve, since the phase field is also
invariant in the bulk. This way, the observation of an invariant
chemical potential in the bulk is consistent with the nature of
the evolution equation. However, this also implies that there is
no possibility to rearrange the value of the chemical potential
at a certain point, once the interface has moved away from
it. As a consequence, the chemical potential in the bulk is
history-dependent, and its value is determined by the chemical
potential of the most recent interfacial sweep. In other words,
the interface leaves its current chemical potential behind. In
fact, this has some serious consequences, because, in view of
the interface, it leads to convective fluxes entering or leaving
it, once it moves. This corresponds to a deposition of mass in
the bulk. Such terms do not exist in the sharp-interface theory,
which considers pure substances. This is attributed to the fact
that the bulk compositions in the pure substance treatment are
a priori fixed at zero and unity. We point out that this is of
course not true for an alloy where shifts in compositions occur
simultaneously with shifts in chemical potentials. Hence, the
current model seems to successfully render this behavior as
well.

Nevertheless, the question arises whether the motion of
a boundary may alter the composition in the bulk, which is
observed here. Since the atoms have to rearrange themselves
at the boundary, once it moves, this is at least regarded as
a possibility. There is some evidence that grain boundaries

will leave an increased vacancy content behind [125–128].
However, the authors in [128] conclude that this is due to
the excess volume, associated with the GB, and not due to
a Gibbs-Thomson effect. Therefore, the question remains to
be answered whether bulk compositions for an interphase
boundary are similarly changed, due to capillarity.

VIII. CONCLUSIONS

A multiphase-field model is formulated to incorporate
mass transport by surface diffusion into the grand-potential
framework. Since the diffusion equation remains to be of sec-
ond order, and an obstacle potential is applied, the proposed
model is fundamentally different and cost-effective compared
to the conventional Cahn-Hilliard-based formulations. The
discussed model extension is regarded to be promising for the
application to a wide range of materials, since the composition
is not required to assume an a priori fixed value in the bulk.
An asymptotic analysis is performed for a binary two-phase
system, in the absence of volume diffusion. A procedure of
Cahn et al. is adopted [22] to restrict the analysis solely to
the interfacial region. A combination of surface diffusion and
surface attachment kinetics [21] is retrieved as the governing
law in the sharp interface limit. The asymptotic analysis also
demanded that the chemical potential be constant across the
interface as its thickness tends to zero. Moreover, the retrieved
Gibbs-Thomson effect is consistent with a general law for a
binary system, which reduces to the simple well-known unary
relation, in the case of a high immiscibility. As an important
outcome, an analytical expression is derived for the governing
rate constant, in terms of the model parameters. Furthermore,
higher-order corrections to the phase-field profile are obtained
in the analysis, which are carefully validated with simulation
results on a cylindrical particle. Subsequently, a systematic
simulation study is employed on thermal grooving under sur-
face diffusion. In the comparative study, theoretical results for
small-slope [19] and finite-slope [20] grooves are considered.
The simulation results agree well with the theoretical results,
both qualitatively and quantitatively. The latter is demon-
strated by measuring the deviation between the theoretical
and the simulated groove profiles by means of L2-norms.
The scaling of the errors with respect to interfacial thickness
is also discussed. It was observed that the kinetics can be
correctly quantified by the derived rate constant. Additionally,
the grooving simulations also revealed that the chemical po-
tential is indeed constant in the normal direction even close to
the triple-junction and also follows the derived quantitative
relation. The model is formulated to enable a combination
of bulk and surface diffusion. However, the influence of an
additional bulk flux is not discussed. The generalization of
the asymptotic derivation for concomitant surface and volume
diffusion is reserved for a possible future work.
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APPENDIX A: DEPARTURE OF EQUILIBRIUM
CHEMICAL POTENTIAL UNDER CAPILLARITY

1. Unary systems

Let us consider a unary nonreacting system, i.e., one
which contains only a single sort of atoms or molecules
which cannot decompose to form a new sort of species. The
system comprises an ambient phase β, which is in contact
with the surroundings, and an enclosed spherical particle of
phase α. The sought relation between the chemical potential
μ̃ and the curvature κ (twice the mean curvature) is specified
in [98, p. 434] as

∂μ̃

∂κ
= γαβV α

m V β
m

V β
m − V α

m

. (A1)

Note that we have switched the naming α and β of the
phases with respect to the textbook. V α

m and V β
m denote

the molar volumes of both phases, and γαβ represents the
interfacial energy between them. A direct evaluation of the
chemical potential shift can be obtained by integrating the
above equation. If the system is compressible, the molar
volume may vary as a function of pressure (which varies
with curvature), and hence the right-hand side might well be
dependent on κ . Giving an explicit formula therefore involves
taking into account the physical properties of the system at
hand. Only an approximation might be applied for condensed
matter in contact with its vapor. For such a system, the
conditions V β

m � V α
m and V α

m , which are almost independent
of pressure (low compressibility of the condensed phase),
might be applied. In this limit, one receives

μ̃ ≈ μ̃(κ = 0) + V α
m γαβκ. (A2)

This is the Gibbs-Thomson relation used in the Mullins theory
[Eq. (27)]. In the following, based on DeHoff’s derivation,
the relations for a binary two-phase system will be presented
(the same problem treated in the asymptotics here).

2. Binary systems

All derivations are performed in [98, p. 435 ff.]. We will
only compile the equations to end up at the desired relations.
The only assumptions imposed by the author are that the
ambient pressure and temperature of the system are equal
before and after the shift from curvature.

The first equation relates the composition of the second
component in the ambient phase to curvature, which writes as

∂cβ

2

∂κ
= γαβcβ

2

cα
1V α

m,1 + cα
2V α

m,2

μ̃
β

12

(
cβ

2 − cα
2

) . (A3)

Here cα
i and cβ

i denote the compositions in either phase
of the ith component and are therefore unitless. The same
notion is also used in the current paper. Accordingly, the
sum conditions cβ

1 + cβ

2 = 1 and cα
1 + cα

2 = 1 are satisfied,
from which follows cβ

2 − cα
2 = cα

1 − cβ

1 . V α
m,i denotes the

molar volume of the ith component in the enclosed phase.
μ̃

β

12 ≡ (∂μ̃ind
1 /∂c2)β represents the dependence of the

chemical potential of the first component on the composition
of the second component in the ambient phase, and thus is
a chemical property of that phase. Therefore, the shift in the
chemical potential of the first component can be written as

∂μ̃ind
1

∂κ
= cβ

2 γαβ

cα
1V α

m,1 + cα
2V α

m,2

cα
1 − cβ

1

. (A4)

According to the Gibbs-Duhem equation, a similar relation
can be obtained for the chemical potential of the second
component, which reads as

∂μ̃ind
2

∂κ
= −cβ

1 γαβ

cα
1V α

m,1 + cα
2V α

m,2

cα
1 − cβ

1

. (A5)

This is already as far as we can go generically. The similarity
between the equations allows one to introduce the quantity
μ̃1 ≡ μ̃ind

1 − μ̃ind
2 , which provides the difference in the

chemical potentials between the two components and turns
out to be sufficient to track the chemical condition of the
system. Then the following relation is obtained:

∂μ̃1

∂κ
= ∂μ̃ind

1

∂κ
− ∂μ̃ind

2

∂κ
= γαβ

cα
1V α

m,1 + cα
2V α

m,2

cα
1 − cβ

1

. (A6)

This is the final equation, relating the chemical potential
difference of a binary system to curvature in a generic form.

For a simple system, an interpretation of the relation is
given in the following. Given that the molar volumes of
each component in phase α are equal (V α

m = V α
m,1 = V α

m,2),
which might be an approximation for substitutional mixing,
the above formula simplifies to

∂μ̃1

∂κ

∣∣∣∣
V α

m,1=V α
m,2

= V α
m γαβ

cα
1 − cβ

1

. (A7)

Furthermore, if the phases are incompressible (V α
m is indepen-

dent of κ) and nearly immiscible (μ̃α
12 and μ̃

β

12 are large, such
that the change in composition in either phase is negligible),
one may explicitly write

μ̃1 ≈ μ̃1(κ = 0) + V α
m γαβκ

cα
1 (κ = 0) − cβ

1 (κ = 0)
. (A8)

This is also the expression given in the Appendix of [78], with
the difference that the necessary assumptions are explicitly
outlined here.

An interesting observation now is made in comparison with
Eq. (A2): The chemical behavior under capillarity, of a single
condensed substance in contact with its vapor, is qualitatively
identical to a binary system under isobaric conditions, com-
prising phases which are incompressible and immiscible. The
only difference is that in a binary system, the switch from a
single chemical potential to a potential difference has to be
made. A quantitative difference is only observed in the pref-
actor, which contains an additional composition difference in
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the denominator for a binary system. If the phases represent
pure substances, we might simplify cα

1 ≈ 1 and cβ

1 ≈ 0 even
further, and Eqs. (A2) and (A8) become quantitatively identi-
cal.

3. Connection between a unary and a binary system

Even though a solid-vapor system of a single component
is usually treated as a unary system and delineated through
phase-inherent molar volumes, a connection between a com-
pressible unary and an incompressible binary system might
be established through vacancies. This way, a volumetric
portion of the vacuum is assigned to a hypothetical particle,
the so-called vacancy. If the size of the volumetric portion
is chosen equal to that occupied by an atom in the solid,
the assumption of equal molar volumes remains valid. There-
fore, the vapor might easily be distinguished from the solid
composition-wise. The composition then represents the mole
fraction of the atoms (with respect to the moles of atoms
plus vacancies), which is high in the solid and low in the
vapor (where most of the volume is occupied by vacancies).
This is the concept used here to distinguish between vapor
and solid through a composition variable. In the following,
the switch of the variables can also be inspected in a more
formal way: In the unary system, the molar volume of a certain
phase V α

m,u ≡ V α/nα
1 reports how much volume V α is occupied

by the number of a single species nα
1 in this phase. In the

corresponding binary system, however, molar volumes have
the definition V α

m,1 ≡ V α
1 /nα

1 and V α
m,2 ≡ V α

2 /nα
2 , where nα

2 are
the moles of the second component (here vacancies) and
V α

1/2 the corresponding volumes occupied by the species in
the phase, such that the volume of a phase writes as V α =
V α

1 + V α
2 . According to the incompressibility and the way in

which vacancies are introduced here, we may now set the
molar volume independent of the phase and composition, such
that Vm = V α

m,1 = V α
m,2 = V β

m,1 = V β

m,2. One obtains the relation

V α
m,u = Vm

cα
1

(A9)

for each phase. Inserting this into Eq. (A1) yields Eq. (A7),
which shows that the notions of an incompressible binary
atom-vacancy system with a varying composition and a unary
solid-vapor system with varying molar volumes are inter-
changeable. To perform the switch, note that the characteristic
variables are simply connected by the relation above.

APPENDIX B: BALANCE LAW FOR AN
EVOLVING SURFACE

The evolution law for a surface can be derived from the
mass balance. For a two-phase binary system, a derivation of
the balance law is presented by Cermelli, Fried, and Gurtin
[104]. The authors additionally consider a velocity field, due
to the movement of the (possibly fluid) phases, which is absent
in our problem. Therefore, any term considering the fluid
velocity can be neglected. The corresponding final equation
[104, Eq. (7.5)] writes as

vn(c+ − c−) = ( j+ − j−) · n + ∇s · js + ς̊ − ςvnκ, (B1)

where vn denotes the scalar normal velocity of the surface,
js is the surface excess flux, n is the unit normal vector, ς

is the surface excess concentration, ς̊ represents its normal
time derivative, and κ denotes the curvature. If r is the signed
normal distance from the surface, the bulk fluxes from either
side are expressed as j± ≡ limr→0± j, where j denotes the
bulk flux. Similarly, the concentrations from either side, c± ≡
limr→0± c, can be expressed as limits from the bulk. Given
that bulk diffusion is absent the above equation simplifies to

vn(c+ − c−) = ∇s · js + ς̊ − ςvnκ. (B2)

A relation to the phase field might be obtained by letting c be
the interpolated composition c(φ,μ) = hα (φα )cα (μ) + [1 −
hα (φα )]cβ (μ), which is indeed a conserved quantity in the
model. If α and β are the phases in contact from the negative
and positive side, one respectively obtains c− = cα (μ−) and
c+ = cβ (μ+). Here μ± ≡ limr→0± μ represents the chemical
potential in the bulk on either side. What is interesting is the
notion of an excess concentration, which reflects the possibil-
ity of adsorption in the interface, due to its physically nonzero
thickness. According to the definition of the surface excess
properties in [100, p. 179 ff.], the surface excess concentration
in our phase-field model might be computed as an integral
across the interface (at least as a first approximation):

ς (s) =
∫ 0

r−
c(r, s) − cα[μ−(s)] dr

+
∫ r+

0
c(r, s) − cβ[μ+(s)] dr, (B3)

where r− ≡ εη− and r+ ≡ εη+ denote the interfacial end-
points. The conclusion is that the integral in the sharp interface
limit vanishes, as long as the composition remains bounded
in the interface, since r± = O(ε). Therefore, one obtains
limε→0 ς = 0. This is consistent with the argument given in
[100, p. 197 ff.]. The balance law in the sharp interface limit
now writes as

vn = ∇s · js

cβ (μ+) − cα (μ−)
. (B4)

APPENDIX C: EXPANSION OF THE BOUNDARY
CONDITION EQUATIONS

1. Phase-field boundary conditions

At the endpoints η±, we expand the boundary condition
equations in powers of ε. Inherently, it is considered that η±
itself are functions of ε. We start with the boundary conditions
for the phase field (40) and (41)

φα (η±, s) = C±, (C1)

where C± refer to constants (C− = 1, C+ = 0). We denote the
left-hand side as P and expand it in terms of ε as

P = P(ε = 0) + ε
∂P

∂ε

∣∣∣∣
ε=0

+ ε2

2

∂2P

∂ε2

∣∣∣∣
ε=0

+ O(ε3) = C±.

(C2)

In this expanded form, it is easy to see that the relations P(ε =
0) = C± and ∂nP/∂εn|ε=0 = 0, ∀ n > 0 have to hold, so as
to satisfy the boundary condition. To find the corresponding
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expressions for these terms, P is written as follows, in terms
of the expansions (55) and (57):

P = φ0
α (η±) + εφ1

α (η±) + ε2φ2
α (η±) + O(ε3) = C±, (C3)

η± = η0
± + εη1

± + ε2η2
± + O(ε3). (C4)

First, the following expression is easily obtained:

P(ε = 0) = φ0
α (η0

±) = C±. (C5)

The other terms are found by first differentiating them, using
the chain rule:

∂P

∂ε
= ∂φ0

α (η±)

∂ε
+ φ1

α (η±)

+ ε
∂φ1

α (η±)

∂ε
+ 2εφ2

α (η±) + O(ε2) (C6)

∂2P

∂ε2
= ∂2φ0

α (η±)

∂ε2
+ 2

∂φ1
α (η±)

∂ε
+ 2φ2

α (η±) + O(ε), (C7)

which results in

∂P

∂ε

∣∣∣∣
ε=0

= ∂φ0
α (η±)

∂ε

∣∣∣∣
ε=0

+ φ1
α (η0

±), (C8)

∂2P

∂ε2

∣∣∣∣
ε=0

= ∂2φ0
α (η±)

∂ε2

∣∣∣∣
ε=0

+ 2
∂φ1

α (η±)

∂ε

∣∣∣∣
ε=0

+ 2φ2
α (η0

±).

(C9)

Additionally, the dependence on ε, for any function f (η±),
may be rewritten as

∂ f (η±)

∂ε
= ∂ f (η)

∂η

∣∣∣∣
η±

∂η±
∂ε

, (C10)

∂2 f (η±)

∂ε2
= ∂2 f (η)

∂η2

∣∣∣∣
η±

(
∂η±
∂ε

)2

+ ∂ f (η)

∂η

∣∣∣∣
η±

∂2η±
∂ε2

. (C11)

In the limit ε → 0, one accordingly obtains

∂ f (η±)

∂ε

∣∣∣∣
ε=0

= ∂ f (η)

∂η

∣∣∣∣
η0±

η1
±, (C12)

∂2 f (η±)

∂ε2

∣∣∣∣
ε=0

= ∂2 f (η)

∂η2

∣∣∣∣
η0±

(η1
±)2 + 2

∂ f (η)

∂η

∣∣∣∣
η0±

η2
±. (C13)

Inserting the result into the boundary conditions finally yields
the sought terms

∂P

∂ε

∣∣∣∣
ε=0

= ∂φ0
α (η)

∂η

∣∣∣∣
η0±

η1
± + φ1

α (η0
±) = 0, (C14)

∂2P

∂ε2

∣∣∣∣
ε=0

= ∂2φ0
α (η)

∂η2

∣∣∣∣
η0±

(η1
±)2 + 2

∂φ0
α (η)

∂η

∣∣∣∣
η0±

η2
±

+ 2
∂φ1

α (η)

∂η

∣∣∣∣
η0±

η1
± + 2φ2

α (η0
±) = 0. (C15)

Expansions for the derivative boundary conditions, (42), can
also be found when proceeding in the same manner.

2. Flux boundary condition

The balance law presented in Appendix A is utilized to
derive flux boundary conditions at the interfacial endpoints r±.
Accordingly, one starts with the more general Eq. (B1). Note

that now the interfacial region is not treated as a whole, by
incorporating excess properties, but the moving surface now
corresponds solely to the coordinate r±. Moreover, since the
isolines corresponding to r± have an exactly zero thickness
mathematically, which makes them independent from ε, one
can safely neglect any surface excess properties. Thus, one
obtains two equations for either end of the interface, which
read as

vn[c+ − c(η+)] = [ j+b − ji(η+)] · n, (C16)

vn[c(η−) − c−] = [ ji(η−) − j−b ] · n. (C17)

It is important to be careful with the limits, where c(η±), for
example, denotes the composition at the interfacial endpoints,
approached from the inner region, in contrast to the outer lim-
its c±, which must not necessarily equal each other. Similarly,
j±b are the bulk fluxes at either side and j±i are the interfacial
ones. In the absence of bulk diffusion, one obtains

ji,n(η+) = vn[c(η+) − c+], (C18)

ji,n(η−) = vn[c(η−) − c−], (C19)

where ji,n(η±) ≡ ji(η±) · n are the scalar normal fluxes in the
interface at either side. In the sharp-interface limit ε → 0, the
above equations can be written as

ji,n(η0
+)|ε=0 = v0

n[c(η0
+, ε = 0) − c+], (C20)

ji,n(η0
−)|ε=0 = v0

n[c(η0
−, ε = 0) − c−]. (C21)

In the absence of bulk diffusion, we first note that the scalar
normal flux in the current model writes as

ji,n = −M

ε

∂μ

∂r
= −M

ε2

∂μ

∂η
, (C22)

according to Eq. (25) and since r = εη.
With J ≡ M∂μ/∂η, one obtains

J (η±) = −ε2 ji,n(η±). (C23)

Since ji,n(η±) = O(1), this results in J (η±, ε = 0) = 0
and ∂J (η±)/∂ε|ε=0 = 0, as well as ∂nJ (η±)/∂εn|ε=0 =
−∂nε2 ji,n(η±)/∂εn|ε=0, ∀ n � 2. It is recalled that one can
write

J = J0 + εJ1 + ε2J2 + O(ε3), (C24)

where J0 ≡ M0 ∂μ0

∂η
, J1 ≡ M0 ∂μ1

∂η
+ M1 ∂μ0

∂η
, J2 ≡ M0 ∂μ2

∂η
+

M1 ∂μ1

∂η
+ M2 ∂μ0

∂η
. To resolve the conditions stated above, the

derivatives with respect to ε are now written as follows in a
straightforward manner:

∂J

∂ε
= ∂J0

∂ε
+ J1 + ε

∂J1

∂ε
+ 2εJ2 + O(ε2), (C25)

∂2J

∂ε2
= ∂2J0

∂ε2
+ 2

∂J1

∂ε
+ 2J2 + O(ε). (C26)

The expressions obtained for the first three orders, by the
use of Eqs. (C12) and (C13) as well as Eqs. (C20) and (C21),
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are

0 = J0(η0
±), (C27)

0 = ∂J0

∂η

∣∣∣∣
η0±

η1
± + J1(η0

±), (C28)

0 = ∂2J0

∂η2

∣∣∣∣
η0±

(η1
±)2 + 2

∂J0

∂η

∣∣∣∣
η0±

η2
± + 2

∂J1

∂η

∣∣∣∣
η0±

η1
±

+ 2J2(η0
±) + 2v0

n[c(η0
±, ε = 0) − c±]. (C29)

APPENDIX D: BOUNDEDNESS OF THE FIRST-ORDER
PHASE-FIELD CORRECTION

The generic solution of Eq. (70), which satisfies φ1
α (η =

0) = 0, is

φ1
α (η) = 1

k
sin(kη)

∫ η

0
q(η) cos(kη) dη

− 1

k
cos(kη)

∫ η

0
q(η) sin(kη) dη + T sin(kη),

(D1)

with k and q(η) standing for 4/π and the right-hand side
of Eq. (70), respectively, where T is a real constant. The
derivative turns out to be

∂φ1
α (η)

∂η
= cos(kη)

∫ η

0
q(η) cos(kη) dη

+ sin(kη)
∫ η

0
q(η) sin(kη) dη + T k cos(kη).

(D2)

Since q(η) is bounded, the above derivative is bounded at η0
−

and η0
+, which is necessary to infer Eq. (74) from Eq. (73).

APPENDIX E: BOUNDEDNESS OF THE SECOND-ORDER
CHEMICAL POTENTIAL

We will solve the second-order correction of the chemical
potential for a particular example, hα = φα and M(φα ) =
M̄

√
φα (1 − φα ). The starting point is Eq. (89), which is in-

tegrated twice. Taking the boundary conditions into account,
one obtains

μ2 = μ2
A ln

[
cos

(
4

π
η

)]

+ μ2
B ln

[
tan

(
4

π
η

)
+ sec

(
4

π
η

)]
+ μ2

C, (E1)

where the coefficients read as μ2
A ≡ v0

nπ (�cα
bi −

�cβ

bi )/(4M̄αβ ) and μ2
B ≡ v0

nπ (�cα
bi + �cβ

bi )/(4M̄αβ ), and

μ2
C is an integration constant. �cα

bi ≡ cα (μ−) − cα (μ0)

and �cβ

bi ≡ cβ (μ+) − cβ (μ0) are the differences in the
composition between the bulk and the interface at either
side of the interface. Interestingly, μ2 shows a nontrivial
variation across the interface. Moreover, it is especially not
bounded at the interfacial endpoints η0

±. One may now ask
whether the chemical potential is bounded at all. However,
this question cannot be answered only by dealing with the
second-order Taylor coefficient of the chemical potential, in
terms of ε. A similar problem arose in a recent derivation of
the Cahn-Hilliard equation with a quadratic mobility [45].
Please note the similarity between Eq. (92) and [45, cf. Eq.
(4.30)]. In their set of equations, based on a well potential,
an exponentially growing third-order chemical potential
correction was observed. Since we are dealing with a finite
domain, instead of a function, which is going to ∞ in the limit
η → ∞ (where c tends toward the bulk value), it is no surprise
that we already observe the unbounded nature after a finite
length, where the bulk is approached. In the above-mentioned
work, the authors did resolve the problem by introducing
another boundary layer and showed that the unboundedness
went away after carefully matching with the inner region.
Please note that for the derivation of the governing equations,
it was not necessary to perform such an extra step. However,
it helped to understand the exponential term and allowed
for a proper matching with the outer region. Regarding our
problem, we will therefore only briefly review the properties
of a possible additional layer and will reserve the (possibly
nontrivial) extra matching step for a future work. Thus, we
perform expansions of μ2, at the interfacial endpoints, and
obtain the relations limη→η0+ μ2 = (μ2

A − μ2
B) ln(η0

+ − η) and
limη→η0− μ2 = (μ2

A + μ2
B) ln(η − η0

−). The additional layer
can be regarded as the region where the correction ε2μ2

contributes an amount in the same order of magnitude as
the correction with one order below, O(ε). Therefore, we
search for the position η, at a fixed ε, for which |εμ2| > χ ,
where χ is a small positive constant. The resultant relations
are �η± < exp[−χ/(ε|μ2

A ∓ μ2
B|)], where �η± = |η − η0

±|
denotes the width of the additional layer. Therefore, the
width of the layer decays exponentially with ε, such that
it will become negligibly small relatively quickly, which
might be the reason why the chemical potential appears to be
discontinuous in the presented results. Preliminary numerical
tests for high composition differences and high interface
velocities at a large ε reveal that the chemical potential
remains bounded very well and qualitatively supports the
existence of a boundary layer-like behavior, close to the
interfacial endpoints, where the chemical potential changed
rapidly, but continuously from the bulk to the interfacial value
at the front.
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