31 research outputs found

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    The Magmatic Origin of the Sudbury Nickel Ores

    No full text

    Impact of electrode design, supply voltage and interelectrode distance on safety aspects and characteristics of a medical DBD plasma source

    No full text
    In the frame of plasma source development for dermatological applications in the field of plasma medicine, operational safety of the devices is of superior priority. For sources based on the concept of dielectric barrier discharges (DBD), electric potentials with amplitudes in the range of some kV are arranged in close proximity to the skin of patients, wherein dielectric strength of the electrodes and leakage currents are crucial for electrical applicability. In this work, ceramic electrodes of 10 mm in diameter and varying ceramic thickness are operated at input powers up to 300 mW against non-biological counter electrodes. In a combined experimental and numerical approach, electric fields inside the ceramic are determined, whereas values are well below the dielectric strength of the material. The spectrally weighted plasma emission is within limit values of exposure to human skin as long as daily treatment does not exceeded 7 h. Neutral gas temperatures of up to 310 K are determined which underline the minor thermal impact of the plasma exposure. In contrast, values for reduced electric fields are of the order of some hundred Townsend and thus the electrons can initiate various secondary effects such as chemical reaction chains. Consequently, ozone concentrations in the discharges are quantified between 230 ppm and 1140 ppm in close proximity to the actual discharge volume and the results are discussed in the frame of risk assessment for therapeutic applications in dermatology

    Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm(®) VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622).

    No full text
    BACKGROUND Cold atmospheric plasma (CAP, i.e. ionized air) is an innovating promising tool in reducing bacteria. OBJECTIVE We conducted the first clinical trial with the novel PlasmaDerm(®) VU-2010 device to assess safety and, as secondary endpoints, efficacy and applicability of 45 s/cm(2) cold atmospheric plasma as add-on therapy against chronic venous leg ulcers. METHODS From April 2011 to April 2012, 14 patients were randomized to receive standardized modern wound care (n = 7) or plasma in addition to standard care (n = 7) 3× per week for 8 weeks. The ulcer size was determined weekly (Visitrak(®) , photodocumentation). Bacterial load (bacterial swabs, contact agar plates) and pain during and between treatments (visual analogue scales) were assessed. Patients and doctors rated the applicability of plasma (questionnaires). RESULTS The plasma treatment was safe with 2 SAEs and 77 AEs approximately equally distributed among both groups (P = 0.77 and P = 1.0, Fisher's exact test). Two AEs probably related to plasma. Plasma treatment resulted in a significant reduction in lesional bacterial load (P = 0.04, Wilcoxon signed-rank test). A more than 50% ulcer size reduction was noted in 5/7 and 4/7 patients in the standard and plasma groups, respectively, and a greater size reduction occurred in the plasma group (plasma -5.3 cm(2) , standard: -3.4 cm(2) ) (non-significant, P = 0.42, log-rank test). The only ulcer that closed after 7 weeks received plasma. Patients in the plasma group quoted less pain compared to the control group. The plasma applicability was not rated inferior to standard wound care (P = 0.94, Wilcoxon-Mann-Whitney test). Physicians would recommend (P = 0.06, Wilcoxon-Mann-Whitney test) or repeat (P = 0.08, Wilcoxon-Mann-Whitney test) plasma treatment by trend. CONCLUSION Cold atmospheric plasma displays favourable antibacterial effects. We demonstrated that plasma treatment with the PlasmaDerm(®) VU-2010 device is safe and effective in patients with chronic venous leg ulcers. Thus, larger controlled trials and the development of devices with larger application surfaces are warranted
    corecore