2,093 research outputs found

    The mPEG-PCL Copolymer for Selective Fermentation of Staphylococcus lugdunensis Against Candida parapsilosis in the Human Microbiome.

    Get PDF
    Many human skin diseases, such as seborrheic dermatitis, potentially occur due to the over-growth of fungi. It remains a challenge to develop fungicides with a lower risk of generating resistant fungi and non-specifically killing commensal microbes. Our probiotic approaches using a selective fermentation initiator of skin commensal bacteria, fermentation metabolites or their derivatives provide novel therapeutics to rein in the over-growth of fungi. Staphylococcus lugdunensis (S. lugdunensis) bacteria and Candida parapsilosis (C. parapsilosis) fungi coexist in the scalp microbiome. S. lugdunensis interfered with the growth of C. parapsilosis via fermentation. A methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) copolymer functioned as a selective fermentation initiator of S. lugdunensis, selectively triggering the S. lugdunensis fermentation to produce acetic and isovaleric acids. The acetic acid and its pro-drug diethyleneglycol diacetate (Ac-DEG-Ac) effectively suppressed the growth of C. parapsilosis in vitro and impeded the fungal expansion in the human dandruff. We demonstrate for the first time that S. lugdunensis is a skin probiotic bacterium that can exploit mPEG-PCL to yield fungicidal short-chain fatty acids (SCFAs). The concept of bacterial fermentation as a part of skin immunity to re-balance the dysbiotic microbiome warrants a novel avenue for studying the probiotic function of the skin microbiome in promoting health

    Polarization-based probabilistic discriminative model for quantitative characterization of cancer cells

    Get PDF
    We propose a polarization-based probabilistic discriminative model for deriving a set of new sigmoid-transformed polarimetry feature parameters, which not only enables accurate and quantitative characterization of cancer cells at pixel level, but also accomplish the task with a simple and stable model. By taking advantages of polarization imaging techniques, these parameters enable a low-magnification and wide-field imaging system to separate the types of cells into more specific categories that previously were distinctive under high magnification. Instead of blindly choosing the model, the L0 regularization method is used to obtain the simplified and stable polarimetry feature parameter. We demonstrate the model viability by using the pathological tissues of breast cancer and liver cancer, in each of which there are two derived parameters that can characterize the cells and cancer cells respectively with satisfactory accuracy and sensitivity. The stability of the final model opens the possibility for physical interpretation and analysis. This technique may bypass the typically labor-intensive and subjective tumor evaluating system, and could be used as a blueprint for an objective and automated procedure for cancer cell screening

    Immune-Related Biomarkers Improve Performance of Risk Prediction Models for Survival in Patients With Hepatocellular Carcinoma

    Get PDF
    ObjectThe prediction of hepatocellular carcinoma (HCC) prognosis faced great challenge due to tumor heterogeneity. The purpose of this study was to explore the correlation between the immune infiltrate and prognosis. Moreover, we aimed to establish a risk prediction model for survival in HCC patients based on clinicopathological and immune indicators.MethodsIn this study, 316 patients with HCC who underwent radical resection in West China Hospital from 2009 to 2014 were included. Clinicopathological data and pathological specimens were collected. H&E staining and immunohistochemical staining were performed on the pathological tissue sections. The evaluation of tumor-infiltrating lymphocyte (TIL) density was based on H&E slices, and the assessment of the expressions of CD8, CD68, Lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin domain and mucin domain-3 (TIM-3), Programmed Cell Death Protein 1 (PD-1), Programmed Cell Death Ligand 1 (PD-L1), OX40, CD66b, and Tryptase. was performed on the immunohistochemical slices. A risk prediction model for survival in HCC patients was established by integrating immune-related biomarkers and clinicopathological indicators.ResultsThe Barcelona Clinic Liver Cancer (BCLC) stage; the microvascular invasion status; the density of TILs; the expressing levels of CD66b, OX40, and PD-L1 in the immune cell; CD68; and CD8 were the predictors of patients’ overall survival (OS). The BCLC stage; the density of TILs; and the expressions of OX40, CD68, and CD8 were associated with disease-free survival (DFS). The expressions of CD66b, CD68, OX40, and CD8 had a cumulative effect on prognosis. The area under the curve of the prediction model for OS based on clinicopathological features was improved from 0.62 to 0.74 by adding to CD8, OX40, CD68, CD66b, and TILs, whereas it was improved from 0.59 to 0.73 for the DFS prediction model.ConclusionOur results, if confirmed, indicated that immune-related biomarkers should be taken into account or stratified in survival analysis for HCC

    Heavy metal and nutrient concentrations in top- and sub-soils of greenhouses and arable fields in East China – Effects of cultivation years, management, and shelter

    Get PDF
    Although greenhouse vegetable production in China is rapidly changing, consumers are concerned about food quality and safety. Studies have shown that greenhouse soils are highly eutrophicated and potentially contaminated by heavy metals. However, to date, no regional study has assessed whether greenhouse soils differ significantly in their heavy metal and nutrient loads compared to adjacent arable land. Our study was conducted in Shouguang County, a key region of greenhouse vegetable production in China. Soil samples down to soil depths of 3 m were taken from 60 greenhouse vegetable fields of three different ages (5, 10, and 20 years) and from 20 adjacent arable fields to analyze the concentrations of heavy metals, nutrients, and soil physio-chemical parameters. A comparison of greenhouse soils with adjacent arable fields revealed that for greenhouses, (a) micro (heavy metals: Cu, Zn, and Mn) and macronutrients (Nmin, Olsen-P, available K) were significantly higher by a factor of about five, (b) N:P:K ratios were significantly imbalanced towards P and K, and (c) topsoil (0–30 cm) concentrations of the above-mentioned micro- and macronutrients increased with years of vegetable cultivation. In contrast, the soil concentrations of the heavy metals Cr and Pb were lower in greenhouse soils. Heavy metal concentrations did not vary significantly with soil depth, except for the micronutrients Cu and Zn, which were between 1- and 3-fold higher in the topsoil (0–30 cm) than in the subsoil (30–300 cm). The Nemerow pollution index (PN) was 0.37, which was below the recommended environmental threshold value (PN < 1). Structural equation model analysis revealed that soil nutrient concentrations in greenhouse soils are directly related to the input of fertilizers and agrochemicals. Lower values of soil Pb and Cr concentrations in greenhouses were due to the sheltering effect of the greenhouse roof, which protected soils from atmospheric deposition due to emissions from nearby industrial complexes

    Microbial contamination status of student meal in Wenzhou from 2016 to 2020

    Get PDF
    ObjectiveTo provide basis for further ensuring the safety of student meals, the microbial contamination status in kindergarten, primary and secondary school canteens in Wenzhou in the past five years were investigated.MethodsFood samples collected in Wenzhou from 2016 to 2020 were detected for hygienic target bacteria (Aerobic Plate count and Escherichia coli) and foodborne pathogens (Staphylococcus aureus, Bacillus cereus, Salmonella and Listeria monocytogenes), and data were analyzed with SPSS 18.0.ResultsThe microbial contamination of student meal in 2016 was serious, with a unqualified rate as high as 23.58%. While the unqualified rates of student meal decreased by 6.27%, 6.80%, 9.06%, and 3.82% from 2017 to 2020 (χ2 = 60.852, P<0.001). Escherichia coli contamination was one of the most serious, and its unqualified rates in the past five years showed a downward trend (9.43%, 5.64%, 6.47%, 6.41%, and 1.91%, χ2 = 5.225, P = 0.022). Except for the higher detection rates of Staphylococcus aureus and Salmonella in 2016 (7.35% and 9.91%), the unqualified rates of foodborne pathogens in other years were at a low level. For different types of schools, the unqualified rates of meal samples for kindergarten, primary and secondary school students in Wenzhou from 2016 to 2020 were 10.34%, 12.81%, and 6.90%, respectively, which had significant differences (χ2 = 8.341, P = 0.015). For different sampling quarters and monitoring points, no significant difference was observed in the overall status of microbial contamination of student meal. Compared with 2016, the risk of microbial contamination of student meal significantly reduced from 2017 to 2020 after adjusting the influencing factors such as the school type, sampling season and location (P<0.01).ConclusionMicrobial contamination of the student meal in kindergartens, primary and middle schools in Wenzhou was the most serious in 2016, while the hygiene conditions of student meal improved from 2017 to 2020. Foodborne microbial contamination in Wenzhou could potentially threaten student health, which should be monitored to prevent the occurrence of foodborne illness in schools

    REG3A overexpression functions as a negative predictive and prognostic biomarker in rectal cancer patients receiving CCRT

    Get PDF
    Background. Concurrent chemoradiotherapy (CCRT) is suggested before resection surgery in the control of rectal cancer. Unfortunately, treatment outcomes are widely variable and highly patientspecific. Notably, rectal cancer patients with distant metastasis generally have a much lower survival rate. Accordingly, a better understanding of the genetic background of patient cohorts can aid in predicting CCRT efficacy and clinical outcomes for rectal cancer before distant metastasis. Methods. A published transcriptome dataset (GSE35452) (n=46) was utilized to distinguish prospective genes concerning the response to CCRT. We recruited 172 rectal cancer patients, and the samples were collected during surgical resection after CCRT. Immunohistochemical (IHC) staining was performed to evaluate the expression level of regenerating family member 3 alpha (REG3A). Pearson's chi-squared test appraised the relevance of REG3A protein expression to clinicopathological parameters. The Kaplan-Meier method was utilized to generate survival curves, and the log-rank test was performed to compare the survival distributions between two given groups. Results. Employing a transcriptome dataset (GSE35452) and focusing on the inflammatory response (GO: 0006954), we recognized that REG3A is the most significantly upregulated gene among CCRT nonresponders (log2 ratio=1.2472, p=0.0079). Following IHC validation, high immunoexpression of REG3A was considerably linked to advanced post-CCRT tumor status (p<0.001), post-CCRT lymph node metastasis (p=0.042), vascular invasion (p=0.028), and low-grade tumor regression (p=0.009). In the multivariate analysis, high immunoexpression of REG3A was independently correlated with poor disease-specific survival (DSS) (p=0.004) and metastasis-free survival (MeFS) (p=0.045). The results of the bioinformatic analysis also supported the idea that REG3A overexpression is implicated in rectal carcinogenesis. Conclusion. In the current study, we demonstrated that REG3A overexpression is correlated with poor CCRT effectiveness and inferior patient survival in rectal cancer. The predictive and prognostic utility of REG3A expression may direct patient stratification and decisionmaking more accurately for those patients
    corecore