55 research outputs found

    Automated Coding of Job Descriptions From a General Population Study: Overview of Existing Tools, Their Application and Comparison

    Get PDF
    OBJECTIVES: Automatic job coding tools were developed to reduce the laborious task of manually assigning job codes based on free-text job descriptions in census and survey data sources, including large occupational health studies. The objective of this study is to provide a case study of comparative performance of job coding and JEM (Job-Exposure Matrix)-assigned exposures agreement using existing coding tools. METHODS: We compared three automatic job coding tools [AUTONOC, CASCOT (Computer-Assisted Structured Coding Tool), and LabourR], which were selected based on availability, coding of English free-text into coding systems closely related to the 1988 version of the International Standard Classification of Occupations (ISCO-88), and capability to perform batch coding. We used manually coded job histories from the AsiaLymph case-control study that were translated into English prior to auto-coding to assess their performance. We applied two general population JEMs to assess agreement at exposure level. Percent agreement and PABAK (Prevalence-Adjusted Bias-Adjusted Kappa) were used to compare the agreement of results from manual coders and automatic coding tools. RESULTS: The coding per cent agreement among the three tools ranged from 17.7 to 26.0% for exact matches at the most detailed 4-digit ISCO-88 level. The agreement was better at a more general level of job coding (e.g. 43.8-58.1% in 1-digit ISCO-88), and in exposure assignments (median values of PABAK coefficient ranging 0.69-0.78 across 12 JEM-assigned exposures). Based on our testing data, CASCOT was found to outperform others in terms of better agreement in both job coding (26% 4-digit agreement) and exposure assignment (median kappa 0.61). CONCLUSIONS: In this study, we observed that agreement on job coding was generally low for the three tools but noted a higher degree of agreement in assigned exposures. The results indicate the need for study-specific evaluations prior to their automatic use in general population studies, as well as improvements in the evaluated automatic coding tools

    Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis

    Get PDF
    Platinum-based nanocatalysts play a crucial role in various electrocatalytic systems that are important for renewable, clean energy conversion, storage and utilization. However, the scarcity and high cost of Pt seriously limit the practical application of these catalysts. Decorating Pt catalysts with other transition metals offers an effective pathway to tailor their catalytic properties, but often at the sacrifice of the electrochemical active surface area (ECSA). Here we report a single-atom tailoring strategy to boost the activity of Pt nanocatalysts with minimal loss in surface active sites. By starting with PtNi alloy nanowires and using a partial electrochemical dealloying approach, we create single-nickel-atom-modified Pt nanowires with an optimum combination of specific activity and ECSA for the hydrogen evolution, methanol oxidation and ethanol oxidation reactions. The single-atom tailoring approach offers an effective strategy to optimize the activity of surface Pt atoms and enhance the mass activity for diverse reactions, opening a general pathway to the design of highly efficient and durable precious metal-based catalysts

    Occupational Benzene Exposure and Lung Cancer Risk: A Pooled Analysis of 14 Case-Control Studies.

    Get PDF
    RationaleBenzene has been classified as carcinogenic to humans, but there is limited evidence linking benzene exposure to lung cancer.ObjectivesWe aimed to examine the relationship between occupational benzene exposure and lung cancer.MethodsSubjects from 14 case-control studies across Europe and Canada were pooled. We used a quantitative job-exposure matrix to estimate benzene exposure. Logistic regression models assessed lung cancer risk across different exposure indices. We adjusted for smoking and five main occupational lung carcinogens and stratified analyses by smoking status and lung cancer subtypes.Measurements and main resultsAnalyses included 28048 subjects (12329 cases, 15719 controls). Lung cancer odds ratios ranged from 1.12 (95% CI: 1.03-1.22) to 1.32 (95% CI: 1.18-1.48) (Ptrend=0.002) for groups with the lowest and highest cumulative occupational exposure, respectively, compared to unexposed subjects. We observed an increasing trend of lung cancer with longer duration of exposure (PtrendPtrend=0.02). These effects were seen for all lung cancer subtypes, regardless of smoking status, and were not influenced by specific occupational groups, exposures, or studies.ConclusionWe found consistent and robust associations between different dimensions of occupational benzene exposure and lung cancer after adjusting for smoking and main occupational lung carcinogens. These associations were observed across different subgroups, including non-smokers. Our findings support the hypothesis that occupational benzene exposure increases the risk of developing lung cancer. Consequently, there is a need to revisit published epidemiological and molecular data on the pulmonary carcinogenicity of benzene

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Influence of Bearing Stiffness on the Nonlinear Dynamics of a Shaft-Final Drive System

    No full text
    The bearing stiffness has a considerable influence on the nonlinear coupling vibration characteristics of the shaft-final drive system. A 14-DOF nonlinear coupled vibration model was established by employing the lumped mass method so as to identify the coupling effects of the bearing stiffness to the vibration response of the shaft-final drive system. The engine’s torque ripple, the alternating load from the universal joint (U-joint), and the time-varying mesh parameters of hypoid gear of the shaft-final drive system were also considered for accurate quantitative analysis. The numerical analysis of the vibration response of the coupled system was performed and the experimental measurements were carried out for the validation test. Results show that, at the given driving speed, improving the bearing stiffness can reduce the vibration response of the given coupled system; however, when the bearing stiffness increases to a critical value, the effects of bearing stiffness on the vibration reduction become insignificant; when the driving speed changes, the resonance regions of the coupled system vary with the bearing stiffness. The results are helpful to determine the proper bearing stiffness and the optimum control strategy for the shaft-final drive system. It is hoped that the optimal shaft-final drive system can provide good vibration characteristics to achieve the energy saving and noise reduction for the vehicle application

    Spinach (Spinacia oleracea) microgreen prevents the formation of advanced glycation end products in model systems and breads

    No full text
    The formation of advanced glycation end products (AGEs) in daily diets poses a great threat to human health, since AGEs are closely related to some chronic metabolic diseases. In this study, we investigated the antiglycative capabilities of some popular microgreens in chemical model. Our data indicated that baby spinach (Spinacia oleracea) had the highest antiglycative activity during 4-wks incubation, with antioxidation being the main action route. Moreover, a bread model was set up to evaluate its antiglycative potential in real food model. The results showed that the fortification of baby spinach in bread significantly inhibited AGEs formation, with acceptable taste and food quality. Further study revealed that the antiglycative components were mainly distributed in leaves, which were separated via column chromatography and tentatively identified as chlorophyll derivatives. In summary, this study highlighted the antiglycative benefits of baby spinach which can be developed into healthy functional foods

    Income Diversification: A Strategy for Rural Region Risk Management

    No full text
    Recent literature shows that income diversification is an important strategy for rural households to manage drought risk in arid and semiarid regions. This article examines whether income diversification can help rural households to overcome the adverse impact of drought in Northern China. Based on field interview data from 291 rural households in 13 townships of Northern China, we found that rural households tend to have a more diversified portfolio of income; the spatial location of rural households determines the type and number of income sources, the degree of income diversification, and the income combinations, especially under the context of frequent drought strikes. These results indicate that income diversification could help rural households to reduce the adverse impact of drought, enhance their resistance and resilience to drought, and make their livelihood system more stable. Income diversification not only is a useful strategy in terms of managing disaster risk and improving social welfare, but also may offer a new perspective for the research of vulnerability, resilience, and adaptive ability of rural social-ecosystem
    • …
    corecore