67 research outputs found

    Synthesis and antimycobacterial activities of non-purine analogs of 6-aryl-9-benzylpurines; imidazopyridines, pyrrolopyridines, benzimidazoles and indoles

    Get PDF
    6,9-Disubstituted purines and 7-deazapurines are known to be powerful inhibitors of Mycobacterium tuberculosis (Mtb) in vitro. Analogs modified in the six-membered ring (imidazopyridines, pyrrolopyridines, benzimidazoles, and indoles) were synthesized and evaluated as Mtb inhibitors. The targets were prepared by functionalization on the bicyclic heterocycle or from simple pyridines. The results reported herein, indicate that the purine N-1, but not N-3, is important for binding to the unknown target. The 3-deazapurines appears to be slightly more active compared to the parent purines and slightly less active than their 7-deazapurine isomers. Removal of both the purine N-3 and N-7 did not result in further enhanced antimycobacterial activity but the toxicity towards mammalian cells was increased. Both 3-deaza and 3,7-dideazapurines exhibited a modest activity against of the Mtb isolate in the state of non-replicating persistence

    Synthesis of non-purine analogs of 6-aryl-9-benzylpurines, and their antimycobacterial activities : compounds modified in the imidazole ring

    Get PDF
    Purine analogs modified in the five-membered ring have been synthesized and examined for antibacterial activity against Mycobacterium tuberculosis H37Rv in vitro employing the microplate alamar blue assay (MABA). The 9-deaza analogs were only found to be weak inhibitors, but the 8-aza-, 7-deaza- and 8-aza-7-deazapurine analogs studied displayed excellent antimycobacterial activities, some even substantially better than the parent purine. In the 7-deazapurine series, MIC values between 0.08 and 0.35 lM, values comparable or better than the reference drugs used in the study (MIC rifampicin 0.09 lM, MIC isoniazid 0.28 lM and MIC PA-824 0.44 lM). The five most active compounds were also examined against a panel of drug-resistant Mtb strain, and they all retained their activity. The compounds examined were significantly less active against M. tuberculosis in a state of non-replicating persistence (NRP). MIC in the low-oxygen-recovery assay (LORA)P60 lM. The 7-deazapurines were somewhat more toxic towards mammalian cells, but still the selectivity indexes were excellent. The non-purine analogs exhibit a selective antimycobacterial activity. They were essentially inactive against Staphylococcus aureus and Escherichia coli

    2,6‐hexadecadiynoic acid and 2,6‐nonadecadiynoic acid: Novel synthesized acetylenic fatty acids as potent antifungal agents

    Get PDF
    The hitherto unknown 2,6‐hexadecadiynoic acid, 2,6‐nonadecadiynoic acid, and 2,9‐hexadecadiynoic acid were synthesized in two steps and in 11–18% overall yields starting from either 1,5‐hexadiyne or 1,8‐nonadiyne. Among all the compounds 2,6‐hexadecadiynoic acid displayed the best overall antifungal activity against both the fluconazole‐resistant Candida albicans strains ATCC 14053 and ATCC 60193, with a minimum inhibitory concentration (MIC of 11 μM), and against Cryptococcus neoformans ATCC 66031 (MIC\u3c5.7 μM). 2,9‐Hexadecadiynoic acid did not display any significant cytotoxicity against the fluconazole‐resistant C. albicans strains, but it showed fungitoxicity against C. neoformans ATCC 66031 with a MIC value of \u3c5.8 μM. Other FA, such as 2‐hexadecynoic acid, 5‐hexadecynoic acid, 9‐hexadecynoic acid, and 6‐nonadecynoic acid were also synthesized and their antifungal activities compared with those of the novel acetylenic FA, 2‐Hexadecynoic acid, a known antifungal FA, exhibited the best antifungal activity (MIC=9.4 μM) against the fluconazole‐resistant C, albicans ATCC 14053 strain, but it showed a MIC value of only 100 μM against C. albicans ATCC 60193. 2,6‐Hexadecadiynoic acid and 2‐hexadecynoic acid also displayed a MIC of 140–145 μM toward Mycobacterium tuberculosis H37Rv in Middlebrook 7H12 medium. In conclusion, 2,6‐hexadecadiynoic acid exhibited the best fungitoxicity profile compared with other analogues. This diynoic FA has the potential to be further evaluated for use in topical antifungal formulations

    Countercurrent Chromatography Fractions of Plant Extracts with Anti-Tuberculosis Activity

    Get PDF
    Samples of numerous plant species were received from the southwestern part of the USA, from Richard Spjut, and plant samples were collected here in Illinois. All were extracted with typical solvents, giving crude residues, some of which were subjected to chromatographic methods. Some of the crude residues and some of the fractions were tested for anti-tuberculosis activity and/or antibacterial activity. In a general way, bioactive natural products are dealt with very well by Liang & Fang. More specifically, the southwestern part of the United States has a large variety of indigenous plants many of which have not been investigated for their medicinal potential, and only very few have had their extracts separated into the individual compounds they may contain. But, some information is available for Native American herbal uses (Moerman,2003)

    Attenuation of Mycobacterium species through direct and macrophage mediated pathway by unsymmetrical diaryl urea

    Get PDF
    Tuberculosis is a major threat for mankind and the emergence of resistance strain of Mycobacterium tuberculosis (Mtb) against first line antibiotics makes it lethal for human civilization. In this study, we have synthesized different diaryl urea derivatives targeting the inhibition of mycolic acid biosynthesis. Among the 39 synthesized molecules, compounds 46, 57, 58 and 86 showed MIC values ≤ 10 μg/ml against H37Rv and mc26030 strains. The best molecule with a methyl at ortho position of the first aromatic ring and prenyl group at the meta position of the second aromatic ring showed the MIC value of 5.2 μg/ml and 1 μg/ml against H37Rv and mc26030 respectively, with mammalian cytotoxicity of 163.4 μg/ml. The effective compounds showed selective inhibitory effect on mycolic acid (epoxy mycolate) biosynthesis in14C-radiolabelled assay. At the same time these molecules also executed their potent immunomodulatory activity by up-regulation of IFN-γ and IL-12 and down-regulation of IL-10.Fil: Velappan, Anand Babu. Sastra University; IndiaFil: Charan Raja, Mamilla R.. Sastra University; IndiaFil: Datta, Dhrubajyoti. Indian Institute of Science Education and Research Pune; IndiaFil: Tsai, Yi Ting. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Halloum, Iman. Université de Montpellier; Francia. Centre National de la Recherche Scientifique; FranciaFil: Wan, Baojie. University of Illinois; Estados UnidosFil: Kremer, Laurent. Université de Montpellier; Francia. Inserm; Francia. Centre National de la Recherche Scientifique; FranciaFil: Gramajo, Hugo Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Franzblau, Scott G.. University of Illinois; Estados UnidosFil: Kar Mahapatra, Santanu. Sastra University; IndiaFil: Debnath, Joy. Sastra University; Indi

    Repositioning Antitubercular 6-Nitro-2,3-dihydroimidazo[2,1-b][1,3]oxazoles for Neglected Tropical Diseases: Structure-Activity Studies on a Preclinical Candidate for Visceral Leishmaniasis.

    Get PDF
    6-Nitro-2,3-dihydroimidazo[2,1-b][1,3]oxazole derivatives were initially studied for tuberculosis within a backup program for the clinical trial agent pretomanid (PA-824). Phenotypic screening of representative examples against kinetoplastid diseases unexpectedly led to the identification of DNDI-VL-2098 as a potential first-in-class drug candidate for visceral leishmaniasis (VL). Additional work was then conducted to delineate its essential structural features, aiming to improve solubility and safety without compromising activity against VL. While the 4-nitroimidazole portion was specifically required, several modifications to the aryloxy side chain were well-tolerated e.g., exchange of the linking oxygen for nitrogen (or piperazine), biaryl extension, and replacement of phenyl rings by pyridine. Several less lipophilic analogues displayed improved aqueous solubility, particularly at low pH, although stability toward liver microsomes was highly variable. Upon evaluation in a mouse model of acute Leishmania donovani infection, one phenylpyridine derivative (37) stood out, providing efficacy surpassing that of the original preclinical lead

    Development of (6 R)-2-Nitro-6-[4-(trifluoromethoxy)phenoxy]-6,7-dihydro-5 H-imidazo[2,1- b][1,3]oxazine (DNDI-8219): A New Lead for Visceral Leishmaniasis.

    Get PDF
    Discovery of the potent antileishmanial effects of antitubercular 6-nitro-2,3-dihydroimidazo[2,1- b][1,3]oxazoles and 7-substituted 2-nitro-5,6-dihydroimidazo[2,1- b][1,3]oxazines stimulated the examination of further scaffolds (e.g., 2-nitro-5,6,7,8-tetrahydroimidazo[2,1- b][1,3]oxazepines), but the results for these seemed less attractive. Following the screening of a 900-compound pretomanid analogue library, several hits with more suitable potency, solubility, and microsomal stability were identified, and the superior efficacy of newly synthesized 6 R enantiomers with phenylpyridine-based side chains was established through head-to-head assessments in a Leishmania donovani mouse model. Two such leads ( R-84 and R-89) displayed promising activity in the more stringent Leishmania infantum hamster model but were unexpectedly found to be potent inhibitors of hERG. An extensive structure-activity relationship investigation pinpointed two compounds ( R-6 and pyridine R-136) with better solubility and pharmacokinetic properties that also provided excellent oral efficacy in the same hamster model (>97% parasite clearance at 25 mg/kg, twice daily) and exhibited minimal hERG inhibition. Additional profiling earmarked R-6 as the favored backup development candidate

    Discovery of Novel Oral Protein Synthesis Inhibitors of Mycobacterium tuberculosis That Target Leucyl-tRNA Synthetase

    Get PDF
    The recent development and spread of extensively drug-resistant and totally drug-resistant resistant (TDR) strains of Mycobacterium tuberculosis highlight the need for new antitubercular drugs. Protein synthesis inhibitors have played an important role in the treatment of tuberculosis (TB) starting with the inclusion of streptomycin in the first combination therapies. Although parenteral aminoglycosides are a key component of therapy for multidrug-resistant TB, the oxazolidinone linezolid is the only orally available protein synthesis inhibitor that is effective against TB. Here, we show that small-molecule inhibitors of aminoacyl-tRNA synthetases (AARSs), which are known to be excellent antibacterial protein synthesis targets, are orally bioavailable and effective against M. tuberculosis in TB mouse infection models. We applied the oxaborole tRNA-trapping (OBORT) mechanism, which was first developed to target fungal cytoplasmic leucyl-tRNA synthetase (LeuRS), to M. tuberculosis LeuRS. X-ray crystallography was used to guide the design of LeuRS inhibitors that have good biochemical potency and excellent whole-cell activity against M. tuberculosis. Importantly, their good oral bioavailability translates into in vivo efficacy in both the acute and chronic mouse models of TB with potency comparable to that of the frontline drug isoniazid

    Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia

    Get PDF
    We conducted a genome-wide association study (GWAS) with replication in 36,180 Chinese individuals and performed further transancestry meta-analyses with data from the Psychiatry Genomics Consortium (PGC2). Approximately 95% of the genome-wide significant (GWS) index alleles (or their proxies) from the PGC2 study were overrepresented in Chinese schizophrenia cases, including ∼50% that achieved nominal significance and ∼75% that continued to be GWS in the transancestry analysis. The Chinese-only analysis identified seven GWS loci; three of these also were GWS in the transancestry analyses, which identified 109 GWS loci, thus yielding a total of 113 GWS loci (30 novel) in at least one of these analyses. We observed improvements in the fine-mapping resolution at many susceptibility loci. Our results provide several lines of evidence supporting candidate genes at many loci and highlight some pathways for further research. Together, our findings provide novel insight into the genetic architecture and biological etiology of schizophrenia

    Facile transformation of Biginelli pyrimidin-2(1H)-ones to pyrimidines. In vitro evaluation as inhibitors of Mycobacterium tuberculosis and modulators of cytostatic activity

    No full text
    A series of pyrimidine derivatives bearing amine substituents at C-2 position were obtained from Biginelli 3,4-dihydropyrimidin-2(1H)-ones and the effect of structural variation on anti-TB activity against Mycobacterium tuberculosis H(37)Rv strain and antiviral activity in a series of cell cultures was evaluated. While the compounds were found to possess structure dependent cytostatic activity, these were not found to be efficient inhibitors of M. tuberculosis nor did they inhibit a broad variety of DNA or RNA viruses in cell culture.status: publishe
    corecore