5,379 research outputs found

    Creating movable interfaces by micro-powder injection moulding

    Get PDF
    This paper presents a novel in situ technique to produce articulated components with high-precision, micro-scale movable interfaces by micro-powder injection moulding (μPIM). The presented process route is based on the use of micro-scale sacrificial layer between the movable subcomponents which is eliminated during the debinding step, creating a dimensionally-controlled, micro-scale mobile interface. The fabrication technique combines the advantages of micro-powder overmoulding, catalytic debinding and sintering. The demonstrated example was a finger bone prosthesis joint consisting of two sub-components with an interface between components of 200 μm in size. The geometries of the sub-components were designed such that they are inseparable throughout the process whilst allowing them to move relative to each other after the debinding stage. The components produced showed the feasibility of the process route to produce readily-assembled meso-, and potentially micro-, scale articulated system

    Antiferromagnetism at T > 500 K in the Layered Hexagonal Ruthenate SrRu2O6

    Get PDF
    We report an experimental and computational study of magnetic and electronic properties of the layered Ru(V) oxide SrRu2O6 (hexagonal, P-3 1m), which shows antiferromagnetic order with a N\'eel temperature of 563(2) K, among the highest for 4d oxides. Magnetic order occurs both within edge-shared octahedral sheets and between layers and is accompanied by anisotropic thermal expansivity that implies strong magnetoelastic coupling of Ru(V) centers. Electrical transport measurements using focused ion beam induced deposited contacts on a micron-scale crystallite as a function of temperature show p-type semiconductivity. The calculated electronic structure using hybrid density functional theory successfully accounts for the experimentally observed magnetic and electronic structure and Monte Carlo simulations reveals how strong intralayer as well as weaker interlayer interactions are a defining feature of the high temperature magnetic order in the material.Comment: Physical Review B 2015 accepted for publicatio

    Revealing the X-ray Variability of AGN with Principal Component Analysis

    Get PDF
    We analyse a sample of 26 active galactic nuclei with deep XMM-Newton observations, using principal component analysis (PCA) to find model independent spectra of the different variable components. In total, we identify at least 12 qualitatively different patterns of spectral variability, involving several different mechanisms, including five sources which show evidence of variable relativistic reflection (MCG-6-30-15, NGC 4051, 1H 0707-495, NGC 3516 and Mrk 766) and three which show evidence of varying partial covering neutral absorption (NGC 4395, NGC 1365, and NGC 4151). In over half of the sources studied, the variability is dominated by changes in a power law continuum, both in terms of changes in flux and power law index, which could be produced by propagating fluctuations within the corona. Simulations are used to find unique predictions for different physical models, and we then attempt to qualitatively match the results from the simulations to the behaviour observed in the real data. We are able to explain a large proportion of the variability in these sources using simple models of spectral variability, but more complex models may be needed for the remainder. We have begun the process of building up a library of different principal components, so that spectral variability in AGN can quickly be matched to physical processes. We show that PCA can be an extremely powerful tool for distinguishing different patterns of variability in AGN, and that it can be used effectively on the large amounts of high-quality archival data available from the current generation of X-ray telescopes.Comment: 25 pages, 27 figures, accepted to MNRAS. Analysis code available on request to lead author. Edit: Rogue table remove

    Developing quality fidelity and engagement measures for complex health interventions

    Get PDF
    Objectives: To understand whether interventions are effective, we need to know whether the interventions are delivered as planned (with fidelity) and engaged with. To measure fidelity and engagement effectively, high‐quality measures are needed. We outline a five‐step method which can be used to develop quality measures of fidelity and engagement for complex health interventions. We provide examples from a fidelity study conducted within an evaluation of an intervention aimed to increase independence in dementia. // Methods: We propose five steps that can be systematically used to develop fidelity checklists for researchers, providers, and participants to measure fidelity and engagement. These steps include the following: (1) reviewing previous measures, (2) analysing intervention components and developing a framework outlining the content of the intervention, (3) developing fidelity checklists and coding guidelines, (4) obtaining feedback about the content and wording of checklists and guidelines, and (5) piloting and refining checklists and coding guidelines to assess and improve reliability. // Results: Three fidelity checklists that can be used reliably were developed to measure fidelity of and engagement with, the Promoting Independence in Dementia (PRIDE) intervention. As these measures were designed to be used by researchers, providers, and participants, we developed two versions of the checklists: one for participants and one for researchers and providers. // Conclusions: The five steps that we propose can be used to develop psychometrically robust and implementable measures of fidelity and engagement for complex health interventions that can be used by different target audiences. By considering quality when developing measures, we can be more confident in the interpretation of intervention outcomes drawn from fidelity and engagement studies

    Second-layer nucleation in coherent Stranski-Krastanov growth of quantum dots

    Full text link
    We have studied the monolayer-bilayer transformation in the case of the coherent Stranski-Krastanov growth. We have found that the energy of formation of a second layer nucleus is largest at the center of the first-layer island and smallest on its corners. Thus nucleation is expected to take place at the corners (or the edges) rather than at the center of the islands as in the case of homoepitaxy. The critical nuclei have one atom in addition to a compact shape, which is either a square of i*i or a rectangle of i*(i-1) atoms, with i>1 an integer. When the edge of the initial monolayer island is much larger than the critical nucleus size, the latter is always a rectangle plus an additional atom, adsorbed at the longer edge, which gives rise to a new atomic row in order to transform the rectangle into the equilibrium square shape.Comment: 6 pages, 4 figures. Accepted version, minor change

    Higher su(N) tensor products

    Full text link
    We extend our recent results on ordinary su(N) tensor product multiplicities to higher su(N) tensor products. Particular emphasis is put on four-point couplings where the tensor product of four highest weight modules is considered. The number of times the singlet occurs in the decomposition is the associated multiplicity. In this framework, ordinary tensor products correspond to three-point couplings. As in that case, the four-point multiplicity may be expressed explicitly as a multiple sum measuring the discretised volume of a convex polytope. This description extends to higher-point couplings as well. We also address the problem of determining when a higher-point coupling exists, i.e., when the associated multiplicity is non-vanishing. The solution is a set of inequalities in the Dynkin labels.Comment: 17 pages, LaTe

    The ambient hydration of the aluminophosphate JDF-2 to AlPO-53(A):insights from NMR crystallography

    Get PDF
    The aluminophosphate (AlPO) JDF-2 is prepared hydro­thermally with methyl­ammonium hydroxide (MAH+·HO-, MAH+ = CH3NH3+), giving rise to a microporous AEN-type framework with occluded MAH+ cations and extra-framework (Al-bound) HO- anions. Despite the presence of these species within its pores, JDF-2 can hydrate upon exposure to atmospheric moisture to give AlPO-53(A), an isostructural material whose crystal structure contains one mol­ecule of H2O per formula unit. This hydration can be reversed by mild heating (such as the frictional heating from magic angle spinning). Previous work has shown good agreement between the NMR parameters obtained experimentally and those calculated from the (optimized) crystal structure of JDF-2. However, several discrepancies are apparent between the experimental NMR parameters for AlPO-53(A) and those calculated from the (optimized) crystal structure (e.g. four 13C resonances are observed, rather than the expected two). The unexpected resonances appear and disappear reversibly with the respective addition and removal of H2O, so clearly arise from AlPO-53(A). We investigate the ambient hydration of JDF-2 using qu­anti­tative 31P MAS NMR to follow the transformation over the course of 3 months. The structures of JDF-2 and AlPO-53(A) are also investigated using a combination of multinuclear solid-state NMR spectroscopy to characterize the samples, and first-principles density functional theory (DFT) calculations to evaluate a range of possible structural models in terms of calculated NMR parameters and energetics. The published structure of JDF-2 is shown to be a good representation of the dehydrated material, but modification of the published structure of AlPO-53(A) is required to provide calculated NMR parameters that are in better agreement with experiment. This modification includes reorientation of all the MAH+ cations and partial occupancy of the H2O sites
    corecore