49 research outputs found

    Strong wind shear events and improved numerical prediction of the wind turbine rotor layer in an Iowa tall tower network

    Get PDF
    Day-ahead bids of wind farm power production depend greatly on the accuracy of wind speed forecasts. Forecasts can be improved by expanding knowledge of the wind characteristics across the wind turbine rotor layer (40 - 120 m) and examining wind direction forecasts, as errors in these forecasts can lead to missed effects of wind turbine wakes. Several high shear events with a change in wind speed of up to 15 m s-1 and changes in wind direction up to 30° between 50 and 200 m were observed across an Iowa tall tower network. The strength of these events could lead to damage of wind turbine components and therefore are important to forecast accurately. A six member Weather Research and Forecasting ensemble forecast was developed to evaluate the ability of the model to forecast wind speed, wind direction, wind shear, and stability at several levels across the rotor layer. Four bias correction methods were tested for each parameter to determine the best forecast method. After correction, wind speed forecasts were improved by up to 19%

    Data Acquisition Protocols and Reporting Standards for Studies of the Electrochemical Reduction of Carbon Dioxide

    Get PDF
    Objective evaluation of the performance of electrocatalysts for CO_2 reduction has been complicated by a lack of standardized methods for measuring and reporting activity data. In this perspective, we advocate that standardizing these practices can aid in advancing research efforts toward the development of efficient and selective CO_2 reduction electrocatalysts. Using information taken from experimental studies, we identify variables that influence the measured activity of CO_2 reduction electrocatalysts and propose procedures to account for these variables in order to improve the accuracy and reproducibility of reported data. We recommend that catalysts be measured under conditions which do not introduce artifacts from impurities, from either the electrolyte or counter electrode, and advocate the acquisition of data measured in the absence of mass transport effects. Furthermore, measured rates of electrochemical reactions should be normalized to both the geometric electrode area as well as the electrochemically active surface area to facilitate the comparison of reported catalysts with those previously known. We demonstrate that, when these factors are accounted for, the CO_2 reduction activities of Ag and Cu measured in different laboratories exhibit little difference. Adoption of the recommendations presented in this perspective would greatly facilitate the identification of superior catalysts for CO_2 reduction arising solely from changes in their composition and pretreatment

    Data Acquisition Protocols and Reporting Standards for Studies of the Electrochemical Reduction of Carbon Dioxide

    Get PDF
    Objective evaluation of the performance of electrocatalysts for CO_2 reduction has been complicated by a lack of standardized methods for measuring and reporting activity data. In this perspective, we advocate that standardizing these practices can aid in advancing research efforts toward the development of efficient and selective CO_2 reduction electrocatalysts. Using information taken from experimental studies, we identify variables that influence the measured activity of CO_2 reduction electrocatalysts and propose procedures to account for these variables in order to improve the accuracy and reproducibility of reported data. We recommend that catalysts be measured under conditions which do not introduce artifacts from impurities, from either the electrolyte or counter electrode, and advocate the acquisition of data measured in the absence of mass transport effects. Furthermore, measured rates of electrochemical reactions should be normalized to both the geometric electrode area as well as the electrochemically active surface area to facilitate the comparison of reported catalysts with those previously known. We demonstrate that, when these factors are accounted for, the CO_2 reduction activities of Ag and Cu measured in different laboratories exhibit little difference. Adoption of the recommendations presented in this perspective would greatly facilitate the identification of superior catalysts for CO_2 reduction arising solely from changes in their composition and pretreatment

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    SSRC Annual Report 2014

    Get PDF
    The SSRC was established in 1950 and enjoys a long and storied history of research accomplishments. The impact of our research has had on the state, the nation and the world is evident in the success of our organization, which has ultimately been driven by the desire and dedication of our employees. Although an organization\u27s annual report provides a venue to applaud the hard work and dedication of its employees for its success during the previous year, this particular report also celebrates our accomplished past and acknowledges significant historical milestones celebrated this year

    Fabrication of Large Area Metal-on-Carbon Catalytic Condensers for Programmable Catalysis

    No full text
    Catalytic condensers stabilize charge on either side of a high-k dielectric film to modulate the electronic states of a catalytic layer for electronic control of surface reactions. Here, carbon sputtering provided for fast, large-scale fabrication of metal-carbon catalytic condensers required for industrial application. Carbon films were sputtered on HfO2 dielectric/p-type Si with different thickness (1, 3, 6, 10 nm), and the enhancement of conductance and capacitance of carbon films was observed upon increasing carbon thickness following thermal treatment at 400 °C. After Pt deposition on the carbon films, the Pt catalytic condenser exhibited high capacitance of ~210 nF/cm^2 that was maintained at a frequency ~1,000 Hz, satisfying the requirement for a dynamic catalyst to implement catalytic resonance. Temperature programmed desorption of carbon monoxide yielded CO desorption peaks which shifted in temperature with varying potential applied to the condenser (−6 V or 6 +V) indicating a shift in the binding energy of carbon monoxide on the Pt condenser surface. A substantial increase of capacitance (~2,000 nF/cm^2) of the Pt-on-carbon devices was observed at elevated temperatures of 400 °C that can modulate ~10% of charge per metal atom when 10 V potential was applied. A large catalytic condenser of 42 cm^2 area Pt/C/HfO2/Si exhibited high capacitance of 9,393 nF with low leakage current/capacitive current ratio (<0.1), demonstrating the practicality and versatility of the facile, large-scale fabrication method for metal-carbon catalytic condensers

    Evaluating Changes in Omega-3 Fatty Acid Intake after Receiving Personal FADS1 Genetic Information: A Randomized Nutrigenetic Intervention

    No full text
    Nutrigenetics research is anticipated to lay the foundation for personalized dietary recommendations; however, it remains unclear if providing individuals with their personal genetic information changes dietary behaviors. Our objective was to evaluate if providing information for a common variant in the fatty acid desaturase 1 (FADS1) gene changed omega-3 fatty acid (FA) intake and blood levels in young female adults (18–25 years). Participants were randomized into Genetic (intervention) and Non-Genetic (control) groups, with measurements taken at Baseline and Final (12 weeks). Dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) was assessed using an omega-3 food frequency questionnaire. Red blood cell (RBC) FA content was quantified by gas chromatography. Implications of participation in a nutrigenetics study and awareness of omega-3 FAs were assessed with online questionnaires. Upon completion of the study, EPA and DHA intake increased significantly (p = 1.0 × 10−4) in all participants. This change was reflected by small increases in RBC %EPA. Participants in the Genetic group showed increased awareness of omega-3 terminology by the end of the study, reported that the dietary recommendations were more useful, and rated cost as a barrier to omega-3 consumption less often than those in the Non-Genetic group. Providing participants FADS1 genetic information did not appear to influence omega-3 intake during the 12 weeks, but did change perceptions and behaviors related to omega-3 FAs in this timeframe
    corecore