169 research outputs found

    Assessment of airway inflammation using sputum, BAL, and endobronchial biopsies in current and ex-smokers with established COPD

    Get PDF
    Rationale: Smoking effects on physiological and gross pathology in chronic obstructive pulmonary disease (COPD) are relatively well described. However, there is little known in COPD about the detailed interrelationships between lung function and inflammatory profiles in different airway compartments from the same individual and whether airway inflammation in these different compartments differs in ex- and current smokers with established COPD. Objectives: We compared sputum, bronchoalveolar (BAL), and airway wall inflammatory profiles in current versus ex-smokers and related this to smoking intensity and lung function in 17 current and 17 ex-smokers with mild to moderate COPD. Results: Current smokers had more sputum mast cells (% differential and absolute numbers), whereas ex-smokers had increased sputum neutrophils. In BAL, there was a significant increase in eosinophils in current smokers, but ex-smokers had significantly increased neutrophils, lymphocytes, and epithelial cells. There were no cell profile differences observed in airway biopsies between current and ex-smokers and there were no correlations between the individual inflammatory cell populations in any of the airway compartments. In current smokers only, smoking intensity was negatively correlated with lung function, and associated with a reduction in overall cellularity of both sputum and BAL. Conclusion: Airway inflammation persists in ex-smokers with COPD, but differs from COPD current smokers. The impact of smoking appears to vary in different airway compartments and any direct relationships between cellularity and lung function tended to be negative, ie, worse lung function indicated the presence of fewer cells

    Reticular Basement Membrane Vessels Are Increased in COPD Bronchial Mucosa by Both Factor VIII and Collagen IV Immunostaining and Are Hyperpermeable

    Get PDF
    Background and Objective. Using Collagen IV staining, we have previously reported that the reticular basement membrane (Rbm) is hypervascular and the lamina propria (LP) is hypovascular in COPD airways. This study compared Collagen IV staining with vessels marked with anti-Factor VIII and examined vessel permeability in bronchial biopsies from COPD and normal subjects using albumin staining. Results. Anti-Collagen IV antibody detected more vessels in the Rbm (P = 0.002) and larger vessels in both Rbm (P < 0.001) and LP (P = 0.003) compared to Factor VIII. COPD airways had more vessels (with greater permeability) in the Rbm (P = 0.01) and fewer vessels (with normal permeability) in the LP compared to controls with both Collagen IV and Factor VIII antibodies (P = 0.04 and P = 0.01). Conclusion. Rbm vessels were increased in number and were hyperpermeable in COPD airways. Anti-Collagen IV and anti-Factor VIII antibodies did not uniformly detect the same vessel populations; the first is likely to reflect larger and older vessels with the latter reflecting smaller, younger vessels

    Evaluation of epithelial mesenchymal transition in patients with chronic obstructive pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The reticular basement membrane (Rbm) in smokers and especially smokers with COPD is fragmented with "clefts" containing cells staining for the collagenase matrix-metalloproteinase-9 (MMP-9) and fibroblast protein, S100A4. These cells are also present in the basal epithelium. Such changes are likely hallmarks of epithelial mesenchymal transition (EMT). We aimed to confirm the epithelial origin of these Rbm cells, and to exclude potential confounding by infiltrating inflammatory cells.</p> <p>Methods</p> <p>Endobronchial biopsy sections from 17 COPD current smokers, with documented Rbm splitting and cellularity were stained for neutrophil elastase (neutrophil marker), CD68 (macrophage/mature fibroblasts), CD4+/CD8+ T lymphocytes, CD19 (B-cells), CD11c (dendritic cells/inflammatory cells), and S100 (Langerhans cells). The number of cells in the Rbm and epithelium staining for these "inflammatory" cell markers were then compared to numbers staining for S100A4, "a documented EMT epitope". Slides were double stained for S100A4 and cytokeratin(s).</p> <p>Results</p> <p>In the basal epithelium significantly more cells stained for S100A4 compared to infiltrating macrophages, fibroblasts or immune cells: median, 26 (21.3 - 37.3) versus 0 (0 - 9.6) per mm, p < 0.003. Markedly more S100A4 staining cells were also observed in the Rbm compared to infiltrating macrophages, neutrophils, fibroblasts or immune cells or any sub-type: 58 (37.3 - 92.6) versus 0 (0 - 4.8) cells/mm Rbm, p < 0.003. Cells in the basal epithelium 26 (21.3 - 37.3) per mm) and Rbm (5.9 (2.3 - 13.8) per mm) frequently double stained for both cytokeratin and S100A4.</p> <p>Conclusions</p> <p>These data provide additional support for active EMT in COPD airways.</p

    Finite type approximations of Gibbs measures on sofic subshifts

    Full text link
    Consider a H\"older continuous potential ϕ\phi defined on the full shift A^\nn, where AA is a finite alphabet. Let X\subset A^\nn be a specified sofic subshift. It is well-known that there is a unique Gibbs measure μϕ\mu_\phi on XX associated to ϕ\phi. Besides, there is a natural nested sequence of subshifts of finite type (Xm)(X_m) converging to the sofic subshift XX. To this sequence we can associate a sequence of Gibbs measures (μϕm)(\mu_{\phi}^m). In this paper, we prove that these measures weakly converge at exponential speed to μϕ\mu_\phi (in the classical distance metrizing weak topology). We also establish a strong mixing property (ensuring weak Bernoullicity) of μϕ\mu_\phi. Finally, we prove that the measure-theoretic entropy of μϕm\mu_\phi^m converges to the one of μϕ\mu_\phi exponentially fast. We indicate how to extend our results to more general subshifts and potentials. We stress that we use basic algebraic tools (contractive properties of iterated matrices) and symbolic dynamics.Comment: 18 pages, no figure

    Disease progression in idiopathic pulmonary fibrosis with mild physiological impairment: analysis from the Australian IPF registry

    Get PDF
    BACKGROUND:Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal fibrosing lung disease of unknown cause. The advent of anti-fibrotic medications known to slow disease progression has revolutionised IPF management in recent years. However, little is known about the natural history of IPF patients with mild physiological impairment. We aimed to assess the natural history of these patients using data from the Australian IPF Registry (AIPFR). METHODS:Using our cohort of real-world IPF patients, we compared FVC criteria for mild physiological impairment (FVC ≥ 80%) against other proposed criteria: DLco ≥ 55%; CPI ≤40 and GAP stage 1 with regards agreement in classification and relationship with disease outcomes. Within the mild cohort (FVC ≥ 80%), we also explored markers associated with poorer prognosis at 12 months. RESULTS:Of the 416 AIPFR patients (mean age 70.4 years, 70% male), 216 (52%) were classified as 'mild' using FVC ≥ 80%. There was only modest agreement between FVC and DLco (k = 0.30), with better agreement with GAP (k = 0.50) and CPI (k = 0.48). Patients who were mild had longer survival, regardless of how mild physiologic impairment was defined. There was, however, no difference in the annual decline in FVC% predicted between mild and moderate-severe groups (for all proposed criteria). For patients with mild impairment (n = 216, FVC ≥ 80%), the strongest predictor of outcomes at 12 months was oxygen desaturation on a 6 min walk test. CONCLUSION:IPF patients with mild physiological impairment have better survival than patients with moderate-severe disease. Their overall rate of disease progression however, is comparable, suggesting that they are simply at different points in the natural history of IPF disease.Helen E. Jo, Ian Glaspole, Yuben Moodley, Sally Chapman, Samantha Ellis ... Reynolds ... Paul N. Reynolds ... et al

    Vessel-Associated Transforming Growth Factor-Beta1 (TGF-β1) Is Increased in the Bronchial Reticular Basement Membrane in COPD and Normal Smokers

    Get PDF
    BACKGROUND: Transforming growth factor-beta1 (TGF-β1) is a multipotential cytokine with angiogenic activity. There are only limited data about its role in airway remodeling in COPD. We have previously shown that the reticular basement membrane (Rbm) is hypervascular in the airways of current smokers either with or without chronic obstructive pulmonary disease (COPD). This study evaluated TGF-β1 immunostaining in the Rbm and its relationship to vascularity in smokers with or without COPD. METHODOLOGY/PRINCIPAL FINDINGS: Bronchial biopsies from 15 smokers with normal lung function, 19 current and 14 ex-smokers with COPD were immunostained for TGF-β1 antibody and compared to 17 healthy controls. The percentage area of tissue and also number and area of vessels staining positively for TGF-β1 were measured and compared between groups. Some bronchial biopsies from current smoking COPD subjects were also stained for phosphorylated (active) Smad2/3. Epithelial TGF- β1 staining was not different between COPD current smokers and normal controls. TGF-β1 stained vessels in the Rbm were increased in smokers with normal lung function, current smoking COPD and ex-smokers with COPD compared to controls [median (range) for number of vessels/mm Rbm 2.5 (0.0-12.7), 3.4 (0.0-8.1) and 1.0 (0.0-6.3) vs. 0.0 (0.0-7.0), p<0.05]. Percentage of vessels stained was also increased in these clinical groups. Preliminary data suggest that in current smoking COPD subjects endothelial cells and cells in the Rbm stain positively for phosphorylated Smad2/3 suggesting TGF-β1 is functionally active in this situation. CONCLUSIONS/SIGNIFICANCE: Vessel-associated TGF-β1 activity is increased in the bronchial Rbm in smokers and especially those with COPD

    Tolerance and rebound with zafirlukast in patients with persistent asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The potential for tolerance to develop to zafirlukast, a cysteinyl leukotriene (CysLT) receptor antagonist (LRA) in persistent asthma, has not been specifically examined.</p> <p>Objective</p> <p>To look for any evidence of tolerance and potential for short-term clinical worsening on LRA withdrawal. Outcome measures included changes in; airway hyperresponsiveness to inhaled methacholine (PD<sub>20</sub>FEV<sub>1</sub>), daily symptoms and peak expiratory flows (PEF), sputum and blood cell profiles, sputum CysLT and prostaglandin (PG)E<sub>2 </sub>and exhaled nitric oxide (eNO) levels.</p> <p>Methods</p> <p>A double blind, placebo-controlled study of zafirlukast, 20 mg twice daily over 12 weeks in 21 asthmatics taking β<sub>2</sub>-agonists only (Group I), and 24 subjects treated with ICS (Group II).</p> <p>Results</p> <p>In Group I, zafirlukast significantly improved morning PEF and FEV<sub>1</sub>compared to placebo (p < 0.01), and reduced morning waking with asthma from baseline after two weeks (p < 0.05). Similarly in Group II, FEV<sub>1 </sub>improved compared to placebo (p < 0.05), and there were early within-treatment group improvements in morning PEF, β<sub>2</sub>-agonist use and asthma severity scores (p < 0.05). However, most improvements with zafirlukast in Group I and to a lesser extent in Group II deteriorated toward baseline values over 12 weeks. In both groups, one week following zafirlukast withdrawal there were significant deteriorations in morning and evening PEFs and FEV<sub>1 </sub>compared with placebo (p ≤ 0.05) and increased nocturnal awakenings in Group II (p < 0.05). There were no changes in PD<sub>20</sub>FEV<sub>1</sub>, sputum CysLT concentrations or exhaled nitric oxide (eNO) levels. However, blood neutrophils significantly increased in both groups following zafirlukast withdrawal compared to placebo (p = 0.007).</p> <p>Conclusion</p> <p>Tolerance appears to develop to zafirlukast and there is rebound clinical deterioration on drug withdrawal, accompanied by a blood neutrophilia.</p
    corecore