29 research outputs found
MP758: East Regional Potato Trials 2006: Summary of NE1014 Regional Project Field Testing of New Potato Clones
The objectives of this regional potato trial are (1) to develop pest-resistant, early-maturing, long-dormant potato varieties that will process from cold storage; (2) to evaluate new and specialty varietÂies developed in the Northeast; (3) to determine climatic effects on performance to develop preÂdictive models for potato improvement; and (4) determine heritability/linkage relationships and improve the genetic base of tetraploid cultivated varieties. The results presented in this report reflect a portion of the activity directed toward objectives 1, 2 and 3.https://digitalcommons.library.umaine.edu/aes_miscpubs/1017/thumbnail.jp
MP757: Eastern Regional Potato Trials 2005: Summary of NE1014 Regional Project Field Testing of New Potato Clones
The objectives of this regional potato trial are (1) to develop pest-resistant, early-maturing, long-dormant potato varieties that will process from cold storage; (2) to evaluate new and specialty varietÂies developed in the Northeast; (3) to determine climatic effects on performance to develop preÂdictive models for potato improvement; and (4) determine heritability/linkage relationships and improve the genetic base of tetraploid cultivated varieties. The results presented in this report reflect a portion of the activity directed toward objectives 1, 2 and 3.https://digitalcommons.library.umaine.edu/aes_miscpubs/1018/thumbnail.jp
MP760: East Regional Potato Trials 2007: Summary of NE1014 Regional Project Field Testing of New Potato Clones
The objectives of this regional potato trial are (1) to develop pest-resistant, early-maturing, long-dormant potato varieties that will process from cold storage; (2) to evaluate new and specialty varietÂies developed in the Northeast; (3) to determine climatic effects on performance to develop preÂdictive models for potato improvement; and (4) determine heritability/linkage relationships and improve the genetic base of tetraploid cultivated varieties. The results presented in this report reflect a portion of the activity directed toward objectives 1, 2 and 3.https://digitalcommons.library.umaine.edu/aes_miscpubs/1016/thumbnail.jp
Conduct Disorder and the specifier callous and unemotional traits in the DSM-5
Item does not contain fulltex
Early Career Aquatic Scientists Forge New Connections at Eco-DAS XV
A sense of kuleana (personal responsibility) in caring for the land and sea. An appreciation for laulima (many hands cooperating). An understanding of aloha âÄina (love of the land). The University of Hawaiâi at Manoa hosted the 2023 Ecological Dissertations in Aquatic Sciences (Eco-DAS) program, which fostered each of these intentions by bringing together a team of early career aquatic ecologists for a week of networking and collaborative, interdisciplinary project development (Fig. 1)
Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting.
In natural photosynthesis, light is used for the production of chemical energy carriers to fuel biological activity. The re-engineering of natural photosynthetic pathways can provide inspiration for sustainable fuel production and insights for understanding the process itself. Here, we employ a semiartificial approach to study photobiological water splitting via a pathway unavailable to nature: the direct coupling of the water oxidation enzyme, photosystem II, to the H2 evolving enzyme, hydrogenase. Essential to this approach is the integration of the isolated enzymes into the artificial circuit of a photoelectrochemical cell. We therefore developed a tailor-made hierarchically structured indium-tin oxide electrode that gives rise to the excellent integration of both photosystem II and hydrogenase for performing the anodic and cathodic half-reactions, respectively. When connected together with the aid of an applied bias, the semiartificial cell demonstrated quantitative electron flow from photosystem II to the hydrogenase with the production of H2 and O2 being in the expected two-to-one ratio and a light-to-hydrogen conversion efficiency of 5.4% under low-intensity red-light irradiation. We thereby demonstrate efficient light-driven water splitting using a pathway inaccessible to biology and report on a widely applicable in vitro platform for the controlled coupling of enzymatic redox processes to meaningfully study photocatalytic reactions.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EP/H00338X/2 to E.R. and EP/G037221/1, nanoDTC, to D.M.), the UK Biology and Biotechnological Sciences Research Council (BB/K002627/1 to A.W.R. and BB/K010220/1 to E.R.), a Marie Curie Intra-European Fellowship (PIEF-GA-2013-625034 to C.Y.L), a Marie Curie International Incoming Fellowship (PIIF-GA-2012-328085 RPSII to J.J.Z) and the CEA and the CNRS (to J.C.F.C.). A.W.R. holds a Wolfson Merit Award from the Royal Society.This is the final version of the article. It first appeared from ACS Publications via http://dx.doi.org/10.1021/jacs.5b0373