29 research outputs found

    Tbx3 fosters pancreatic cancer growth by increased angiogenesis and activin/nodal-dependent induction of stemness

    Get PDF
    AbstractCell fate decisions and pluripotency, but also malignancy depend on networks of key transcriptional regulators. The T-box transcription factor TBX3 has been implicated in the regulation of embryonic stem cell self-renewal and cardiogenesis. We have recently discovered that forced TBX3 expression in embryonic stem cells promotes mesendoderm specification directly by activating key lineage specification factors and indirectly by enhancing paracrine NODAL signalling. Interestingly, aberrant TBX3 expression is associated with breast cancer and melanoma formation. In other cancers, loss of TBX3 expression is associated with a more aggressive phenotype e.g. in gastric and cervical cancer. The precise function of TBX3 in pancreatic ductal adenocarcinoma remains to be determined. In the current study we provide conclusive evidence for TBX3 overexpression in pancreatic cancer samples as compared to healthy tissue. While proliferation remains unaltered, forced TBX3 expression strongly increases migration and invasion, but also angiogenesis in vitro and in vivo. Finally, we describe the TBX3-dependency of cancer stem cells that perpetuate themselves through an autocrine TBX3–ACTIVIN/NODAL signalling loop to sustain stemness. Thus, TBX3 is a new key player among pluripotency-related genes driving cancer formation

    Telomerase and pluripotency factors jointly regulate stemness in pancreatic cancer stem cells

    Get PDF
    © 2021 by the authors.To assess the role of telomerase activity and telomere length in pancreatic CSCs we used different CSC enrichment methods (CD133, ALDH, sphere formation) in primary patient-derived pancreatic cancer cells. We show that CSCs have higher telomerase activity and longer telomeres than bulk tumor cells. Inhibition of telomerase activity, using genetic knockdown or pharmacological inhibitor (BIBR1532), resulted in CSC marker depletion, abrogation of sphere formation in vitro and reduced tumorigenicity in vivo. Furthermore, we identify a positive feedback loop between stemness factors (NANOG, OCT3/4, SOX2, KLF4) and telomerase, which is essential for the self-renewal of CSCs. Disruption of the balance between telomerase activity and stemness factors eliminates CSCs via induction of DNA damage and apoptosis in primary patient-derived pancreatic cancer samples, opening future perspectives to avoid CSC-driven tumor relapse. In the present study, we demonstrate that telomerase regulation is critical for the “stemness” maintenance in pancreatic CSCs and examine the effects of telomerase inhibition as a potential treatment option of pancreatic cancer. This may significantly promote our understanding of PDAC tumor biology and may result in improved treatment for pancreatic cancer patients.This research was funded by a Max Eder Fellowship of the German Cancer Aid (111746), a German Cancer Aid Priority Program ‘Translational Oncology’ 70112505, by a Collaborative Research Centre grant (316249678—SFB 1279) of the German Research Foundation, and by a Hector Foundation Cancer Research grant (M65.1) to P.C.H., B.S.J. is supported by a Rámon y Cajal Merit Award (RYC2012-12104) from the Ministerio de Economía y Competitividad, Spain and a Coordinated grant (GC16173694BARB) from the Fundación Asociación Española Contra el Cáncer (AECC). K.W. is supported by a Baustein 3.2 by Ulm University

    Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells

    Get PDF
    © The Author(s) 2020Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer death, has a 5-year survival rate of approximately 7–9%. The ineffectiveness of anti-PDAC therapies is believed to be due to the existence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are functionally plastic, and have exclusive tumorigenic, chemoresistant and metastatic capacities. Herein, we describe a 2D in vitro system for long-term enrichment of pancreatic CSCs that is amenable to biological and CSC-specific studies. By changing the carbon source from glucose to galactose in vitro, we force PDAC cells to utilize OXPHOS, resulting in enrichment of CSCs defined by increased CSC biomarker and pluripotency gene expression, greater tumorigenic potential, induced but reversible quiescence, increased OXPHOS activity, enhanced invasiveness, and upregulated immune evasion properties. This CSC enrichment method can facilitate the discovery of new CSC-specific hallmarks for future development into targets for PDAC-based therapies.We acknowledge and thank Dr. Nuria Malats and Jaime Villarreal from the Spanish National Cancer Research Center (CNIO) for RNA sequencing and analysis, funded by Fondo de Investigaciones Sanitarias (FIS) grant PI18/01347. We thank Patricia Sánchez-Tomero and Marina Ochando-Garmendia for technical assistance and support and Dr. Raúl Sánchez Lanzas for assistance with autophagy experiments. We want to particularly acknowledge the patients and the BioBank Hospital Ramón y Cajal-IRYCIS (PT13/0010/0002) integrated in the Spanish National Biobanks Network for its collaboration and, in particular, Adrián Povo Retana for macrophage isolation. We would also like to thank the Transmission Electron Microscopy Unit Laboratory, part of the UAM Interdepartmental Investigation Service (SIdI); Coral Pedrero for exceptional help with in vivo experiments; and the laboratories of Dr. Amparo Cano and Dr. José González Castaño for reagents and helpful discussions. S.V. was a recipient of an Ayuda de Movilidad del Personal Investigador del IRYCIS, a mobility grant from the Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain, and a pre-doctoral fellowship from the Comunidad de Madrid, Ayudas Para La Contratación De Investigadores Predoctorales Y Posdoctorales (PEJD-2017-PRE/BMD-5062), Madrid, Spain. This study was supported by a Rámon y Cajal Merit Award (RYC-2012-12104) from the Ministerio de Economía y Competitividad, Spain (to B.S.); funding from la Beca Carmen Delgado/Miguel Pérez-Mateo from AESPANC-ACANPAN Spain (to B.S.); a Conquer Cancer Now Grant from the Concern Foundation (Los Angeles, CA, USA) (to B.S.); a Coordinated grant (GC16173694BARB) from the Fundación Asociación Española Contra el Cáncer (AECC) (to B.S.); FIS grants PI18/00757 (to B.S.), PI16/00789 (to M.A.F.-M.), PI18/00267 (to L.G.-B.; co-financed through Fondo Europeo de Desarrollo Regional (FEDER) “Una manera de hacer Europa”); a Miguel Servet award (CP16/00121) (to P.S.); a Max Eder Fellowship of the German Cancer Aid (111746) (to P.C.H.); and the German Research Foundation (DFG, CRC 1279 “Exploiting the human peptidome for Novel Antimicrobial and Anticancer Agents”; to P.C.H.)

    Telomerase and pluripotency factors jointly regulate stemness in pancreatic cancer stem cells

    Full text link
    To assess the role of telomerase activity and telomere length in pancreatic CSCs we used different CSC enrichment methods (CD133, ALDH, sphere formation) in primary patient-derived pancreatic cancer cells. We show that CSCs have higher telomerase activity and longer telomeres than bulk tumor cells. Inhibition of telomerase activity, using genetic knockdown or pharmacological inhibitor (BIBR1532), resulted in CSC marker depletion, abrogation of sphere formation in vitro and reduced tumorigenicity in vivo. Furthermore, we identify a positive feedback loop between stemness factors (NANOG, OCT3/4, SOX2, KLF4) and telomerase, which is essential for the self-renewal of CSCs. Disruption of the balance between telomerase activity and stemness factors eliminates CSCs via induction of DNA damage and apoptosis in primary patient-derived pancreatic cancer samples, opening future perspectives to avoid CSC-driven tumor relapse. In the present study, we demonstrate that telomerase regulation is critical for the “stemness” maintenance in pancreatic CSCs and examine the effects of telomerase inhibition as a potential treatment option of pancreatic cancer. This may significantly promote our understanding of PDAC tumor biology and may result in improved treatment for pancreatic cancer patientsThis research was funded by a Max Eder Fellowship of the German Cancer Aid (111746), a German Cancer Aid Priority Program ‘Translational Oncology’ 70112505, by a Collaborative Research Centre grant (316249678—SFB 1279) of the German Research Foundation, and by a Hector Foundation Cancer Research grant (M65.1) to P.C.H., B.S.J. is supported by a Rámon y Cajal Merit Award (RYC- 2012-12104) from the Ministerio de Economía y Competitividad, Spain and a Coordinated grant (GC16173694BARB) from the Fundación Asociación Española Contra el Cáncer (AECC). K.W. is supported by a Baustein 3.2 by Ulm University

    Overview of the MOSAiC expedition: Physical oceanography

    Get PDF
    Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present alongdrift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean

    Persistence of Porphyromonas gingivalis is a negative predictor in patients with moderate to severe periodontitis after nonsurgical periodontal therapy.

    No full text
    OBJECTIVES The aim of this study was to evaluate the quality of prediction for stable results after nonsurgical periodontal therapy by several microbiological variables of the subgingival biofilm and biomarkers of gingival crevicular fluid or oral lavage. MATERIAL AND METHODS Forty-six individuals with moderate or severe chronic periodontitis receiving nonsurgical periodontal therapy were monitored for clinical variables, selected microorganisms, and biomarkers at baseline and 3 and 6 months thereafter. Logistic regression analysis and general linear model (GLM) were applied for analysis of variance and covariance. RESULTS At 6 months, 20 patients showed a high response (HR) to treatment (at least 60 % of reduction of numbers of sites with PD >4 mm), whereas 26 did not (low response, LR). All clinical variables were significantly improved at 3 and 6 months within each group (p < 0.001, each compared with baseline). Modeling the impact of Porphyromonas gingivalis, Treponema denticola, and median of MMP-8 on to the response to treatment as continuous variables by GLM showed a significant influence of these variables (p = 0.045) with the strongest influence of P. gingivalis (p = 0.012) followed by T. denticola (p = 0.045) and no association with MMP-8 (p = 0.982). Samples tested positively for P. gingivalis decreased only in HR (3 months: p = 0.003; 6 months: p = 0.002). Calprotectin levels in GCF were lower in the HR group compared with the LR group at 3 months (p = 0.008) and at 6 months (p = 0.018). CONCLUSION Persistence of P. gingivalis combined with a high GCF level of calprotectin may have a negative predictive value on response to periodontal therapy. CLINICAL RELEVANCE Microbiological diagnostics for P. gingivalis before and 3 months after SRP may have a predictive value on response to periodontal therapy. The combination with MMP-8 in oral lavage or preferably calprotectin in GCF might give additional information

    Concerning the Role of Supercritical Carbon Dioxide in SN1 Reactions

    No full text
    A series of SN<sub>1</sub>-type reactions has been studied under various conditions to clarify the role of supercritical carbon dioxide (scCO<sub>2</sub>) as reaction medium for this kind of transformations. The application of scCO<sub>2</sub> did not result in higher yields in any of the experiments in comparison to those under neat conditions or in the presence of other inert compressed gases. High-pressure UV/Vis spectroscopic measurements were carried out to quantify the degree of carbocation formation of a highly SN<sub>1</sub>-active alkyl halide as a function of the applied solvent. No measureable concentration of carbocations could be detected in scCO<sub>2</sub>, just like in other low polarity solvents. Taken together, these results do not support the previously claimed activating effect via enhanced SN<sub>1</sub> ionization due to the quadrupolar moment of the supercritical fluid

    Pilot Study: Magnetic Motion Analysis for Swallowing Detection Using MEMS Cantilever Actuators

    No full text
    The swallowing process involves complex muscle coordination mechanisms. When alterations in such mechanisms are produced by neurological conditions or diseases, a swallowing disorder known as dysphagia occurs. The instrumental evaluation of dysphagia is currently performed by invasive and experience-dependent techniques. Otherwise, non-invasive magnetic methods have proven to be suitable for various biomedical applications and might also be applicable for an objective swallowing assessment. In this pilot study, we performed a novel approach for deglutition evaluation based on active magnetic motion sensing with permanent magnet cantilever actuators. During the intake of liquids with different consistency, we recorded magnetic signals of relative movements between a stationary sensor and a body-worn actuator on the cricoid cartilage. Our results indicate the detection capability of swallowing-related movements in terms of a characteristic pattern. Consequently, the proposed technique offers the potential for dysphagia screening and biofeedback-based therapies
    corecore