5,113 research outputs found

    The FGF receptor uses the endocannabinoid signaling system to couple to an axonal growth response

    Get PDF
    Akey role for DAG lipase activity in the control of axonal growth and guidance in vitro and in vivo has been established. For example, DAG lipase activity is required for FGF-stimulated calcium influx into neuronal growth cones, and this response is both necessary and sufficient for an axonal growth response. The mechanism that couples the hydrolysis of DAG to the calcium response is not known. The initial hydrolysis of DAG at the sn-1 position (by DAG lipase) will generate 2-arachidonylglycerol, and this molecule is well established as an endogenous cannabinoid receptor agonist in the brain. In the present paper, we show that in rat cerebellar granule neurons, CB1 cannabinoid receptor antagonists inhibit axonal growth responses stimulated by N-cadherin and FGF2. Furthermore, three CB1 receptor agonists mimic the N-cadherin/FGF2 response at a step downstream from FGF receptor activation, but upstream from calcium influx into cells. In contrast, we could find no evidence for the CB1 receptor coupling the TrkB neurotrophin receptor to an axonal growth response in the same neurons. The observation that the CB1 receptor can couple the activated FGF receptor to an axonal growth response raises novel therapeutic opportunities

    ATR-FTIR spectroscopy detects alterations induced by organotin(IV) carboxylates in MCF-7 cells at sub-cytotoxic/-genotoxic concentrations.

    Get PDF
    The environmental impact of metal complexes such as organotin(IV) compounds is of increasing concern. Genotoxic effects of organotin(IV) compounds (0.01 μg/ml, 0.1 μg/ml or 1.0 μg/ml) were measured using the alkaline single-cell gel electrophoresis (comet) assay to measure DNA single-strand breaks (SSBs) and the cytokinesis-block micronucleus (CBMN) assay to determine micronucleus formation. Biochemical-cell signatures were also ascertained using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. In the comet assay, organotin(IV) carboxylates induced significantly-elevated levels of DNA SSBs. Elevated micronucleus-forming activities were also observed. Following interrogation using ATR-FTIR spectroscopy, infrared spectra in the biomolecular range (900 cm-1 – 1800 cm-1) derived from organotin-treated MCF-7 cells exhibited clear alterations in their biochemical-cell fingerprint compared to control-cell populations following exposures as low as 0.0001 μg/ml. Mono-, di- or tri-organotin(IV) carboxylates (0.1 μg/ml, 1.0 μg/ml or 10.0 μg/ml) were markedly cytotoxic as determined by the clonogenic assay following treatment of MCF-7 cells with ≥ 1.0 μg/ml. Our results demonstrate that ATR-FTIR spectroscopy can be applied to detect molecular alterations induced by organotin(IV) compounds at sub-cytotoxic and sub-genotoxic concentrations. This biophysical approach points to a novel means of assessing risk associated with environmental contaminants

    An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Semaphorin 3A signaling

    Get PDF
    Glycogen synthase kinase (GSK)-3 is a serine/threonine kinase that has been implicated in several aspects in embryonic development and several growth factor signaling cascades. We now report that an inactive phosphorylated pool of the enzyme colocalizes with F-actin in both neuronal and nonneuronal cells. Semaphorin 3A (Sema 3A), a molecule that inhibits axonal growth, activates GSK-3 at the leading edge of neuronal growth cones and in Sema 3A–responsive human breast cancer cells, suggesting that GSK-3 activity might play a role in coupling Sema 3A signaling to changes in cell motility. We show that three different GSK-3 antagonists (LiCl, SB-216763, and SB-415286) can inhibit the growth cone collapse response induced by Sema 3A. These studies reveal a novel compartmentalization of inactive GSK-3 in cells and demonstrate for the first time a requirement for GSK-3 activity in the Sema 3A signal transduction pathway

    Targeting B-Raf inhibitor resistant melanoma with novel cell penetrating peptide disrupters of PDE8A – C-Raf

    Get PDF
    Background: Recent advances in the treatment of melanoma that involve immunotherapy and B-Raf inhibition have revolutionised cancer care for this disease. However, an un-met clinical need remains in B-Raf inhibitor resistant patients where first-generation B-Raf inhibitors provide only short-term disease control. In these cases, B-Raf inhibition leads to paradoxical activation of the C-Raf – MEK – ERK signalling pathway, followed by metastasis. PDE8A has been shown to directly interact with and modulate the cAMP microdomain in the vicinity of C-Raf. This interaction promotes C-Raf activation by attenuating the PKA-mediated inhibitory phosphorylation of the kinase. Methods: We have used a novel cell-penetrating peptide agent (PPL-008) that inhibits the PDE8A – C-Raf complex in a human malignant MM415 melanoma cell line and MM415 melanoma xenograft mouse model to investigate ERK MAP kinase signalling. Results: We have demonstrated that the PDE8A – C-Raf complex disruptor PPL-008 increased inhibitory C-Raf-S259 phosphorylation and significantly reduced phospho-ERK signalling. We have also discovered that the ability of PPL-008 to dampen ERK signalling can be used to counter B-Raf inhibitor-driven paradoxical activation of phospho-ERK in MM415 cells treated with PLX4032 (Vemurafenib). PPL-008 treatment also significantly retarded the growth of these cells. When applied to a MM415 melanoma xenograft mouse model, PPL-008C penetrated tumour tissue and significantly reduced phospho-ERK signalling in that domain. Conclusion: Our data suggests that the PDE8A-C-Raf complex is a promising therapeutic treatment for B-Raf inhibitor resistant melanoma

    Preface

    Get PDF

    Theorising social class and its application to the study of health inequalities

    Get PDF
    The literature on health inequalities often uses measures of socio-economic position pragmatically to rank the population to describe inequalities in health rather than to understand social and economic relationships between groups. Theoretical considerations about the meaning of different measures, the social processes they describe, and how these might link to health are often limited. This paper builds upon Wright’s synthesis of social class theories to propose a new integrated model for understanding social class as applied to health. This model incorporates several social class mechanisms: social background and early years’ circumstances; Bourdieu’s habitus and distinction; social closure and opportunity hoarding; Marxist conflict over production (domination and exploitation); and Weberian conflict over distribution. The importance of discrimination and prejudice in determining the opportunities for groups is also explicitly recognised, as is the relationship with health behaviours. In linking the different social class processes we have created an integrated theory of how and why social class causes inequalities in health. Further work is required to test this approach, to promote greater understanding of researchers of the social processes underlying different measures, and to understand how better and more comprehensive data on the range of social class processes these might be collected in the future

    Neo-Aristotelian Naturalism and the Evolutionary Objection: Rethinking the Relevance of Empirical Science

    Get PDF
    Neo-Aristotelian metaethical naturalism is a modern attempt at naturalizing ethics using ideas from Aristotle’s teleological metaphysics. Proponents of this view argue that moral virtue in human beings is an instance of natural goodness, a kind of goodness supposedly also found in the realm of non-human living things. Many critics question whether neo-Aristotelian naturalism is tenable in light of modern evolutionary biology. Two influential lines of objection have appealed to an evolutionary understanding of human nature and natural teleology to argue against this view. In this paper, I offer a reconstruction of these two seemingly different lines of objection as raising instances of the same dilemma, giving neo-Aristotelians a choice between contradicting our considered moral judgment and abandoning metaethical naturalism. I argue that resolving the dilemma requires showing a particular kind of continuity between the norms of moral virtue and norms that are necessary for understanding non-human living things. I also argue that in order to show such a continuity, neo-Aristotelians need to revise the relationship they adopt with empirical science and acknowledge that the latter is relevant to assessing their central commitments regarding living things. Finally, I argue that to move this debate forward, both neo-Aristotelians and their critics should pay attention to recent work on the concept of organism in evolutionary and developmental biology
    • …
    corecore