527 research outputs found
Reframing the future: the role of reflexivity in governance networks in sustainability transitions
Contains fulltext :
183569.pdf (Publisher’s version ) (Open Access)30 november 201
Transgressive learning in times of global systemic dysfunction: interview with Arjen Wals
Arjen Wals is Professor of Transformative Learning for Socio-Ecological Sustainability at Wageningen University. He also holds the UNESCO Chair of Social Learning and Sustainable Development. Furthermore he is the Carl Bennet Guest Professor in Education for Sustainable Development (ESD) at Gothenburg University in Sweden. He obtained his PhD in 1991 with a Fulbright fellowship at the University of Michigan in Ann Arbor. His dissertation tackled the interface of environmental psychology and environmental and sustainability education. His recent work focuses on transformative social learning in vital coalitions of multiple stakeholders at the interface of science and society. His teaching and research focus on designing learning processes and learning spaces that enable people to contribute meaningfully sustainability. A central question in his work is: how to create conditions that support (new) forms of learning which take full advantage of the diversity, creativity and resourcefulness that is all around us, but so far remain largely untapped in our search for a world that is more sustainable than the one currently in prospect? In 2014 he was the lead author of an article published in Science Magazine on the role of citizen science in bridging science education, environmental education and sustainability. He is editor and co-editor of a number of popular books including: Higher Education and the Challenge of Sustainability (Kluwer Academic, 2004), Creating Sustainable Environments in our Schools (Trentham, 2006), Social Learning towards a Sustainable World with foreword by Fritjof Capra and an afterword by Michael Apple (Wageningen Academic, 2007), Learning for Sustainability in Times of Accelerating Change (2012), and of Routledge’s International Handbook on Environmental Education Research (2013). He has (co)authored over 250 publications in multiple languages. Wals is a co-founder of Caretakers of the Environment/International and a recipient of the environmental education research award of the North American Association for Environmental Education, and former president of the Special Interest Group on Environmental & Ecological Education of the AERA. He writes a regular research blog that signals developments in the emerging field of sustainability education: www.transformativelearning.n
Recommended from our members
GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells.
Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A nonlethal forward genetic screen in near-haploid KBM7 cells identified the HUSH (human silencing hub) complex, comprising three poorly characterized proteins, TASOR, MPP8, and periphilin; this complex is absent from Drosophila but is conserved from fish to humans. Loss of HUSH components resulted in decreased H3K9me3 both at endogenous genomic loci and at retroviruses integrated into heterochromatin. Our results suggest that the HUSH complex is recruited to genomic loci rich in H3K9me3, where subsequent recruitment of the methyltransferase SETDB1 is required for further H3K9me3 deposition to maintain transcriptional silencing.This work was supported by a Wellcome Trust Principal Research Fellowship to P.J.L. (084957/Z/08/Z) and studentship to I.A.T., an MRC Centenary Award to R.T.T., and the Cambridge Biomedical Research Centre (UK). The CIMR is in receipt of a Wellcome Trust Strategic Award.This is the author accepted manuscript. The final version is available from AAAS via http://dx.doi.org/10.1126/science.aaa722
Mathematical modelling long-term effects of replacing Prevnar7 with Prevnar13 on invasive pneumococcal diseases in England and Wales
England and Wales recently replaced the 7-valent pneumococcal conjugate vaccine (PCV7) with its 13-valent equivalent (PCV13), partly based on projections from mathematical models of the long-term impact of such a switch compared to ceasing pneumococcal conjugate vaccination altogether. A compartmental deterministic model was used to estimate parameters governing transmission of infection and competition between different groups of pneumococcal serotypes prior to the introduction of PCV13. The best-fitting parameters were used in an individual based model to describe pneumococcal transmission dynamics and effects of various options for the vaccination programme change in England and Wales. A number of scenarios were conducted using (i) different assumptions about the number of invasive pneumococcal disease cases adjusted for the increasing trend in disease incidence prior to PCV7 introduction in England and Wales, and (ii) a range of values representing serotype replacement induced by vaccination of the additional six serotypes in PCV13. Most of the scenarios considered suggest that ceasing pneumococcal conjugate vaccine use would cause an increase in invasive pneumococcal disease incidence, while replacing PCV7 with PCV13 would cause an overall decrease. However, the size of this reduction largely depends on the level of competition induced by the additional serotypes in PCV13. The model estimates that over 20 years of PCV13 vaccination, around 5000–62000 IPD cases could be prevented compared to stopping pneumococcal conjugate vaccination altogether. Despite inevitable uncertainty around serotype replacement effects following introduction of PCV13, the model suggests a reduction in overall invasive pneumococcal disease incidence in all cases. Our results provide useful evidence on the benefits of PCV13 to countries replacing or considering replacing PCV7 with PCV13, as well as data that can be used to evaluate the cost-effectiveness of such a switch
Elliptical Squeezed States and Rydberg Wave Packets
We present a theoretical construction for closest-to-classical wave packets
localized in both angular and radial coordinates and moving on a keplerian
orbit. The method produces a family of elliptical squeezed states for the
planar Coulomb problem that minimize appropriate uncertainty relations in
radial and angular coordinates. The time evolution of these states is studied
for orbits with different semimajor axes and eccentricities. The elliptical
squeezed states may be useful for a description of the motion of Rydberg wave
packets excited by short-pulsed lasers in the presence of external fields,
which experiments are attempting to produce. We outline an extension of the
method to include certain effects of quantum defects appearing in the
alkali-metal atoms used in experiments.Comment: published in Phys. Rev. A, vol. 52, p. 2234, Sept. 199
Keplerian Squeezed States and Rydberg Wave Packets
We construct minimum-uncertainty solutions of the three-dimensional
Schr\"odinger equation with a Coulomb potential. These wave packets are
localized in radial and angular coordinates and are squeezed states in three
dimensions. They move on elliptical keplerian trajectories and are appropriate
for the description of the corresponding Rydberg wave packets, the production
of which is the focus of current experimental effort. We extend our analysis to
incorporate the effects of quantum defects in alkali-metal atoms, which are
used in experiments.Comment: accepted for publication in Physical Review
Long-Term Evolution and Revival Structure of Rydberg Wave Packets for Hydrogen and Alkali-Metal Atoms
This paper begins with an examination of the revival structure and long-term
evolution of Rydberg wave packets for hydrogen. We show that after the initial
cycle of collapse and fractional/full revivals, which occurs on the time scale
, a new sequence of revivals begins. We find that the structure of
the new revivals is different from that of the fractional revivals. The new
revivals are characterized by periodicities in the motion of the wave packet
with periods that are fractions of the revival time scale . These
long-term periodicities result in the autocorrelation function at times greater
than having a self-similar resemblance to its structure for times
less than . The new sequence of revivals culminates with the
formation of a single wave packet that more closely resembles the initial wave
packet than does the full revival at time , i.e., a superrevival
forms. Explicit examples of the superrevival structure for both circular and
radial wave packets are given. We then study wave packets in alkali-metal
atoms, which are typically used in experiments. The behavior of these packets
is affected by the presence of quantum defects that modify the hydrogenic
revival time scales and periodicities. Their behavior can be treated
analytically using supersymmetry-based quantum-defect theory. We illustrate our
results for alkali-metal atoms with explicit examples of the revival structure
for radial wave packets in rubidium.Comment: To appear in Physical Review A, vol. 51, June 199
Folate Status of Reproductive Age Women and Neural Tube Defect Risk: The Effect of Long-Term Folic Acid Supplementation at Doses of 140 µg and 400 µg per Day
Primary prevention of most folate-responsive neural tube defects (NTDs) may not require 400 μg folic acid/day but may be achieved by attaining a high maternal folate status. Using RBC folate ≥906 nmol/L as a marker for NTD risk reduction, the study aimed to determine the change in blood folate concentrations in reproductive age women in response to long-term folic acid supplementation at 400 µg/day and 140 µg/day (dose designed to mimic the average daily folic acid intake received from New Zealand’s proposed mandatory bread fortification program). Participants were randomly assigned to a daily folic acid supplement of 140 µg (n = 49), 400 µg (n = 48) or placebo (n = 47) for 40 weeks. RBC folate concentrations were measured at baseline, and after 6, 12, 29 and 40 weeks. At 40 weeks, the overall prevalence of having a RBC folate <906 nmol/L decreased to 18% and 35% in the 400 µg and 140 µg groups, respectively, while remaining relatively unchanged at 58% in the placebo group. After 40 weeks, there was no evidence of a difference in RBC folate between the two treatment groups (P = 0.340), nor was there evidence of a difference in the odds of a RBC folate <906 nmol/L (P = 0.078). In conclusion, the average daily intake of folic acid received from the proposed fortification program would increase RBC folate concentrations in reproductive age women to levels associated with a low risk of NTDs
Analytic results for Gaussian wave packets in four model systems: II. Autocorrelation functions
The autocorrelation function, A(t), measures the overlap (in Hilbert space)
of a time-dependent quantum mechanical wave function, psi(x,t), with its
initial value, psi(x,0). It finds extensive use in the theoretical analysis and
experimental measurement of such phenomena as quantum wave packet revivals. We
evaluate explicit expressions for the autocorrelation function for
time-dependent Gaussian solutions of the Schrodinger equation corresponding to
the cases of a free particle, a particle undergoing uniform acceleration, a
particle in a harmonic oscillator potential, and a system corresponding to an
unstable equilibrium (the so-called `inverted' oscillator.) We emphasize the
importance of momentum-space methods where such calculations are often more
straightforwardly realized, as well as stressing their role in providing
complementary information to results obtained using position-space
wavefunctions.Comment: 18 pages, RevTeX, to appear in Found. Phys. Lett, Vol. 17, Dec. 200
- …