175 research outputs found

    Developing resources to facilitate culturally-sensitive service planning and delivery – doing research inclusively with people with learning disabilities

    Get PDF
    Background Black, Asian and minority ethnic people with learning disabilities face inequities in health and social care provision. Lower levels of service uptake and satisfaction with services have been reported, however, this is largely based on the views of carers. The ‘Access to Social Care: Learning Disabilities (ASC-LD)’ study sought to explore the views and experiences of social support services among adults with learning disabilities from Black, Asian and minority ethnic communities. Interviews with 32 Black, Asian and minority ethnic adults with learning disabilities were conducted to explore participants’ cultural identities, their understanding and experience of ‘support’. The views and experiences expressed in the ASC-LD study were used in the ‘Tools for Talking project’ to develop a suite of resources designed to facilitate culturally-sensitive communication and information-sharing, service planning and delivery through improved mutual understanding between providers and users of services. This paper describes the Tools for Talking project which sought to co-develop the resources through a partnership event. Methods An inclusive approach was adopted to address issues that are important to people with learning disabilities, to represent their views and experiences, and to involve Black, Asian and minority ethnic people with learning disabilities in the research process. Partnerships were developed with provider organisations and service users who were invited to a ‘Partnership Event’. Collaborators at the partnership event were asked to comment on and evaluate draft resources which included a series of videos and activities to explore topics that emerged as important in the ASC-LD study. Their comments were collated and the tools developed as they suggested. Results Using the results from the ASC-LD study helped to ensure that the draft resources were relevant to service users, addressing topics that were important to them. The partnership event was an effective method to collaborate with a relatively large number of stakeholders. However, the event was resource intensive and required substantial planning to ensure active and meaningful participation. Considerations, such as inviting stakeholders, developing the programme and selecting a venue are discussed. Conclusions The partnership approach has led to the development of a set of five illustrative videos and accompanying activities that address issues that emerged from the collaborative process including: culture, activities, support from staff, important people, choices and independence. These resources are freely available at: www.Toolsfortalking.co.uk. They are designed to be used by users and providers of services, but may also be useful in other settings

    Effective Caspase Inhibition Blocks Neutrophil Apoptosis and Reveals Mcl-1 as Both a Regulator and a Target of Neutrophil Caspase Activation

    Get PDF
    Human tissue inflammation is terminated, at least in part, by the death of inflammatory neutrophils by apoptosis. The regulation of this process is therefore key to understanding and manipulating inflammation resolution. Previous data have suggested that the short-lived pro-survival Bcl-2 family protein, Mcl-1, is instrumental in determining neutrophil lifespan. However, Mcl-1 can be cleaved following caspase activity, and the possibility therefore remains that the observed fall in Mcl-1 levels is due to caspase activity downstream of caspase activation, rather than being a key event initiating apoptosis in human neutrophils

    Hypoxia increases neutrophil-driven matrix destruction after exposure to Mycobacterium tuberculosis.

    Get PDF
    The importance of neutrophils in the pathology of tuberculosis (TB) has been recently established. We demonstrated that TB lesions in man are hypoxic, but how neutrophils in hypoxia influence lung tissue damage is unknown. We investigated the effect of hypoxia on neutrophil-derived enzymes and tissue destruction in TB. Human neutrophils were stimulated with M. tuberculosis (M.tb) or conditioned media from M.tb-infected monocytes (CoMTB). Neutrophil matrix metalloproteinase-8/-9 and elastase secretion were analysed by luminex array and gelatin zymography, gene expression by qPCR and cell viability by flow cytometry. Matrix destruction was investigated by confocal microscopy and functional assays and neutrophil extracellular traps (NETs) by fluorescence assay. In hypoxia, neutrophil MMP-8 secretion and gene expression were up-regulated by CoMTB. MMP-9 activity and neutrophil elastase (NE) secretion were also increased in hypoxia. Hypoxia inhibited NET formation and both neutrophil apoptosis and necrosis after direct stimulation by M.tb. Hypoxia increased TB-dependent neutrophil-mediated matrix destruction of Type I collagen, gelatin and elastin, the main structural proteins of the human lung. Dimethyloxalylglycin (DMOG), which stabilizes hypoxia-inducible factor-1α, increased neutrophil MMP-8 and -9 secretion. Hypoxia in our cellular model of TB up-regulated pathways that increase neutrophil secretion of MMPs that are implicated in matrix destruction

    Targeted Deletion of HIF-1α Gene in T Cells Prevents their Inhibition in Hypoxic Inflamed Tissues and Improves Septic Mice Survival

    Get PDF
    Sepsis patients may die either from an overwhelming systemic immune response and/or from an immunoparalysis-associated lack of anti-bacterial immune defence. We hypothesized that bacterial superantigen-activated T cells may be prevented from contribution into anti-bacterial response due to the inhibition of their effector functions by the hypoxia inducible transcription factor (HIF-1alpha) in inflamed and hypoxic areas.Using the Cre-lox-P-system we generated mice with a T-cell targeted deletion of the HIF-1alpha gene and analysed them in an in vivo model of bacterial sepsis. We show that deletion of the HIF-1alpha gene leads to higher levels of pro-inflammatory cytokines, stronger anti-bacterial effects and much better survival of mice. These effects can be at least partially explained by significantly increased NF-kappaB activation in TCR activated HIF-1 alpha deficient T cells.T cells can be recruited to powerfully contribute to anti-bacterial response if they are relieved from inhibition by HIF-1alpha in inflamed and hypoxic areas. Our experiments uncovered the before unappreciated reserve of anti-bacterial capacity of T cells and suggest novel therapeutic anti-pathogen strategies based on targeted deletion or inhibition of HIF-1 alpha in T cells

    Vasodilator Phosphostimulated Protein (VASP) Protects Endothelial Barrier Function During Hypoxia

    Get PDF
    The endothelial barrier controls the passage of solutes from the vascular space. This is achieved through active reorganization of the actin cytoskeleton. A central cytoskeletal protein involved into this is vasodilator-stimulated phosphoprotein (VASP). However, the functional role of endothelial VASP during hypoxia has not been thoroughly elucidated. We determined endothelial VASP expression through real-time PCR (Rt-PCR), immunhistochemistry, and Western blot analysis during hypoxia. VASP promoter studies were performed using a PGL3 firefly luciferase containing plasmid. Following approval by the local authorities, VASP−/− mice and littermate controls were subjected to normobaric hypoxia (8% O2, 92% N2) after intravenous injection of Evans blue dye. In in vitro studies, we found significant VASP repression in human microvascular and human umbilical vein endothelial cells through Rt-PCR, immunhistochemistry, and Western blot analysis. The VASP promoter construct demonstrated significant repression in response to hypoxia, which was abolished when the binding of hypoxia-inducible factor 1 alpha was excluded. Exposure of wild-type (WT) and VASP−/− animals to normobaric hypoxia for 4 h resulted in an increase in Evans blue tissue extravasation that was significantly increased in VASP−/− animals compared to WT controls. In summary, we demonstrate here that endothelial VASP holds significant importance for endothelial barrier properties during hypoxia

    T Helper 1–Inducing Adjuvant Protects against Experimental Paracoccidioidomycosis

    Get PDF
    Immunostimulatory therapy is a promising approach to improving the treatment of systemic fungal infections such as paracoccidioidomycosis (PCM), whose drug therapy is usually prolonged and associated with toxic side effects and relapses. The current study was undertaken to determine if the injection of a T helper (Th) 1–stimulating adjuvant in P. brasiliensis–infected mice could have a beneficial effect on the course of experimental PCM. For this purpose, mice were infected and treated with complete Freund's adjuvant (CFA), a well-established Th1 experimental inductor, or incomplete Freund's adjuvant (IFA - control group) on day 20 postinfection. Four weeks after treatment, the CFA-treated mice presented a mild infection in the lungs characterized by absence of epithelioid cell granulomas and yeast cells, whereas the control mice presented multiple sites of focal epithelioid granulomas with lymphomonocytic halos circumscribing a high number of viable and nonviable yeast cells. In addition, CFA administration induced a 2.4 log reduction (>99%) in the fungal burden when compared to the control group, and led to an improvement of immune response, reversing the immunosuppression observed in the control group. The immunotherapy with Th1-inducing adjuvant, approved to be used in humans, might be a valuable tool in the treatment of PCM and potentially useful to improve the clinical cure rate in humans

    Mitochondrial Membrane Potential in Human Neutrophils Is Maintained by Complex III Activity in the Absence of Supercomplex Organisation

    Get PDF
    textabstractBackground: Neutrophils depend mainly on glycolysis for their enegry provision. Their mitochondria maintain a membrace potential (ΔΨm), which is usually generated by the repiratory chain complexes. We investigated the source of ΔΨm in neutrophils, as compared to peripheral blood mononuclear leukocytes and HL-60 cells, and whether neutrophils can still utilise this ΔΨm for the generation of ATP. Methods and Principal Findings: Individual activity of the oxidative phosphorylation complexes was significantly reduced in neutrophils, except for complex II and V, but ΔΨm was still decreased byinhibition of complex III, confirming the role of the respiratory chain in maintaining ΔΨm. Complex V did not maintain ΔΨm by consumption of ATP, as has previously been suggested for eosinophils shuttle. Furthermore, respiratory supercomplexes, which contribute to efficient coupling of the respiratory chain to ATP synthesis, were ladding in neutrophil mitochondria. When HL-60 cells were differentiated to neutrophil-like cells, they lost mitochondrial supercimplex organisation while gaining increased aerobic glycolysis, just like neutrophils. Conclusions: We show that neutrophils can maintain ΔΨm via the glycerol-3-phosphate shuttle, wereby their mitochondria play an important role in the regulation of aerobic glycolysis, rather than producing energy themselves. This peculiar mitochondrial phenotype is acquired during differentiation from myeloid precursors

    Induction of Heme Oxygenase-1, Biliverdin Reductase and H-Ferritin in Lung Macrophage in Smokers with Primary Spontaneous Pneumothorax: Role of HIF-1α

    Get PDF
    Few data concern the pathophysiology of primary spontaneous pneumothorax (PSP), which is associated with alveolar hypoxia/reoxygenation. This study tested the hypothesis that PSP is associated with oxidative stress in lung macrophages. We analysed expression of the oxidative stress marker 4-HNE; the antioxidant and anti-inflammatory proteins heme oxygenase-1 (HO-1), biliverdin reductase (BVR) and heavy chain of ferritin (H-ferritin); and the transcription factors controlling their expression Nrf2 and HIF-1alpha, in lung samples from smoker and nonsmoker patients with PSP (PSP-S and PSP-NS), cigarette smoke being a risk factor of recurrence of the disease.mRNA was assessed by RT-PCR and proteins by western blot, immunohistochemistry and confocal laser analysis. 4-HNE, HO-1, BVR and H-ferritin were increased in macrophages from PSP-S as compared to PSP-NS and controls (C). HO-1 increase was associated with increased expression of HIF-1alpha mRNA and protein in alveolar macrophages in PSP-S patients, whereas Nrf2 was not modified. To understand the regulation of HO-1, BVR and H-ferritin, THP-1 macrophages were exposed to conditions mimicking conditions in C, PSP-S and PSP-NS patients: cigarette smoke condensate (CS) or air exposure followed or not by hypoxia/reoxygenation. Silencing RNA experiments confirmed that HIF-1alpha nuclear translocation was responsible for HO-1, BVR and H-ferritin induction mediated by CS and hypoxia/reoxygenation.PSP in smokers is associated with lung macrophage oxidative stress. The response to this condition involves HIF-1alpha-mediated induction of HO-1, BVR and H-ferritin

    C. elegans SWAN-1 Binds to EGL-9 and Regulates HIF-1-Mediated Resistance to the Bacterial Pathogen Pseudomonas aeruginosa PAO1

    Get PDF
    Pseudomonas aeruginosa is a nearly ubiquitous human pathogen, and infections can be lethal to patients with impaired respiratory and immune systems. Prior studies have established that strong loss-of-function mutations in the egl-9 gene protect the nematode C. elegans from P. aeruginosa PAO1 fast killing. EGL-9 inhibits the HIF-1 transcription factor via two pathways. First, EGL-9 is the enzyme that targets HIF-1 for oxygen-dependent degradation via the VHL-1 E3 ligase. Second, EGL-9 inhibits HIF-1-mediated gene expression through a VHL-1-independent mechanism. Here, we show that a loss-of-function mutation in hif-1 suppresses P. aeruginosa PAO1 resistance in egl-9 mutants. Importantly, we find stabilization of HIF-1 protein is not sufficient to protect C. elegans from P. aeruginosa PAO1 fast killing. However, mutations that inhibit both EGL-9 pathways result in higher levels of HIF-1 activity and confer resistance to the pathogen. Using forward genetic screens, we identify additional mutations that confer resistance to P. aeruginosa. In genetic backgrounds that stabilize C. elegans HIF-1 protein, loss-of-function mutations in swan-1 increase the expression of hypoxia response genes and protect C. elegans from P. aeruginosa fast killing. SWAN-1 is an evolutionarily conserved WD-repeat protein belonging to the AN11 family. Yeast two-hybrid and co-immunoprecipitation assays show that EGL-9 forms a complex with SWAN-1. Additionally, we present genetic evidence that the DYRK kinase MBK-1 acts downstream of SWAN-1 to promote HIF-1-mediated transcription and to increase resistance to P. aeruginosa. These data support a model in which SWAN-1, MBK-1 and EGL-9 regulate HIF-1 transcriptional activity and modulate resistance to P. aeruginosa PAO1 fast killing
    corecore