1,579 research outputs found
An approach toward an analysis of the pattern recognition involved in the stellar orientation of birds
A conditioning method was used to investigate the orientational responses of ducks as affected by manipulations of the stellar patterns in a planetarium. Under simulated natural skies it was possible to train a bird to a particular direction successively under all positions of the rotating sphere at a constant latitude. The responses were independent of the phase relationships between local time, season, and appearance of the sky provided the bird had been trained under the particular sector of the sphere some time before
Static flux bias of a flux qubit using persistent current trapping
Qubits based on the magnetic flux degree of freedom require a flux bias,
whose stability and precision strongly affect the qubit performance, up to a
point of forbidding the qubit operation. Moreover, in the perspective of
multiqubit systems, it must be possible to flux-bias each qubit independently,
hence avoiding the traditional use of externally generated magnetic fields in
favour of on-chip techniques that minimize cross-couplings. The solution
discussed in this paper exploits a persistent current, trapped in a
superconducting circuit integrated on chip that can be inductively coupled with
an individual qubit. The circuit does not make use of resistive elements that
can be detrimental for the qubit coherence. The trapping procedure allows to
control and change stepwise the amount of stored current; after that, the
circuit can be completely disconnected from the external sources. We show in a
practical case how this works and how to drive the bias circuit at the required
value.Comment: 5 figures submitted to Superconductor Science and Technolog
Characterizing Quantum Microwave Radiation and its Entanglement with Superconducting Qubits using Linear Detectors
Recent progress in the development of superconducting circuits has enabled
the realization of interesting sources of nonclassical radiation at microwave
frequencies. Here, we discuss field quadrature detection schemes for the
experimental characterization of itinerant microwave photon fields and their
entanglement correlations with stationary qubits. In particular, we present
joint state tomography methods of a radiation field mode and a two-level
system. Including the case of finite quantum detection efficiency, we relate
measured photon field statistics to generalized quasi-probability distributions
and statistical moments for one-channel and two-channel detection. We also
present maximum-likelihood methods to reconstruct density matrices from
measured field quadrature histograms. Our theoretical investigations are
supported by the presentation of experimental data, for which microwave quantum
fields beyond the single-photon and Gaussian level have been prepared and
reconstructed.Comment: 14 pages, 5 figure
Resolving photon number states in a superconducting circuit
Electromagnetic signals are always composed of photons, though in the circuit
domain those signals are carried as voltages and currents on wires, and the
discreteness of the photon's energy is usually not evident. However, by
coupling a superconducting qubit to signals on a microwave transmission line,
it is possible to construct an integrated circuit where the presence or absence
of even a single photon can have a dramatic effect. This system is called
circuit quantum electrodynamics (QED) because it is the circuit equivalent of
the atom-photon interaction in cavity QED. Previously, circuit QED devices were
shown to reach the resonant strong coupling regime, where a single qubit can
absorb and re-emit a single photon many times. Here, we report a circuit QED
experiment which achieves the strong dispersive limit, a new regime of cavity
QED in which a single photon has a large effect on the qubit or atom without
ever being absorbed. The hallmark of this strong dispersive regime is that the
qubit transition can be resolved into a separate spectral line for each photon
number state of the microwave field. The strength of each line is a measure of
the probability to find the corresponding photon number in the cavity. This
effect has been used to distinguish between coherent and thermal fields and
could be used to create a photon statistics analyzer. Since no photons are
absorbed by this process, one should be able to generate non-classical states
of light by measurement and perform qubit-photon conditional logic, the basis
of a logic bus for a quantum computer.Comment: 6 pages, 4 figures, hi-res version at
http://www.eng.yale.edu/rslab/papers/numbersplitting_hires.pd
AC induced damping of a fluxon in long Josephson junction
We present a theoretical and experimental study of Josephson vortex (fluxon)
moving in the presence of spatially homogeneous dc and ac bias currents. By
mapping this problem to the problem of calculating the current-voltage
characteristic of a small Josephson junction, we derive the dependence of the
average fluxon velocity on the dc bias current. In particular we find that the
low frequency ac bias current results in an additional nonlinear damping of
fluxon motion. Such ac induced damping crucially depends on the intrinsic
damping parameter and increases drastically as this parameter is reduced. We
find a good agreement of the analysis with both the direct numerical
simulations and the experimentally measured current-voltage characteristics of
a long annular Josephson junction with one trapped fluxon.Comment: Physical Review B, in pres
Spin-glasses in optical cavity
Recent advances in nanofabrication and optical control have garnered
tremendous interest in multi-qubit-cavity systems. Here we analyze a spin-glass
version of such a nanostructure, solving analytically for the phase diagrams in
both the matter and radiation subsystems in the replica symmetric regime.
Interestingly, the resulting phase transitions turn out to be tunable simply by
varying the matter-radiation coupling strength
Probing quantum coherence in qubit arrays
We discuss how the observation of population localization effects in
periodically driven systems can be used to quantify the presence of quantum
coherence in interacting qubit arrays. Essential for our proposal is the fact
that these localization effects persist beyond tight-binding Hamiltonian
models. This result is of special practical relevance in those situations where
direct system probing using tomographic schemes becomes infeasible beyond a
very small number of qubits. As a proof of principle, we study analytically a
Hamiltonian system consisting of a chain of superconducting flux qubits under
the effect of a periodic driving. We provide extensive numerical support of our
results in the simple case of a two-qubits chain. For this system we also study
the robustness of the scheme against different types of noise and disorder. We
show that localization effects underpinned by quantum coherent interactions
should be observable within realistic parameter regimes in chains with a larger
number o
Coulomb-assisted braiding of Majorana fermions in a Josephson junction array
We show how to exchange (braid) Majorana fermions in a network of
superconducting nanowires by control over Coulomb interactions rather than
tunneling. Even though Majorana fermions are charge-neutral quasiparticles
(equal to their own antiparticle), they have an effective long-range
interaction through the even-odd electron number dependence of the
superconducting ground state. The flux through a split Josephson junction
controls this interaction via the ratio of Josephson and charging energies,
with exponential sensitivity. By switching the interaction on and off in
neighboring segments of a Josephson junction array, the non-Abelian braiding
statistics can be realized without the need to control tunnel couplings by gate
electrodes. This is a solution to the problem how to operate on topological
qubits when gate voltages are screened by the superconductor
Entanglement Sudden Death in Band Gaps
Using the pseudomode method, we evaluate exactly time-dependent entanglement
for two independent qubits, each coupled to a non-Markovian structured
environment. Our results suggest a possible way to control entanglement sudden
death by modifying the qubit-pseudomode detuning and the spectrum of the
reservoirs. Particularly, in environments structured by a model of a
density-of-states gap which has two poles, entanglement trapping and prevention
of entanglement sudden death occur in the weak-coupling regime
Photodetection of propagating quantum microwaves in circuit QED
We develop the theory of a metamaterial composed of an array of discrete
quantum absorbers inside a one-dimensional waveguide that implements a
high-efficiency microwave photon detector. A basic design consists of a few
metastable superconducting nanocircuits spread inside and coupled to a
one-dimensional waveguide in a circuit QED setup. The arrival of a {\it
propagating} quantum microwave field induces an irreversible change in the
population of the internal levels of the absorbers, due to a selective
absorption of photon excitations. This design is studied using a formal but
simple quantum field theory, which allows us to evaluate the single-photon
absorption efficiency for one and many absorber setups. As an example, we
consider a particular design that combines a coplanar coaxial waveguide with
superconducting phase qubits, a natural but not exclusive playground for
experimental implementations. This work and a possible experimental realization
may stimulate the possible arrival of "all-optical" quantum information
processing with propagating quantum microwaves, where a microwave photodetector
could play a key role.Comment: 27 pages, submitted to Physica Scripta for Nobel Symposium on "Qubits
for Quantum Information", 200
- …