1,588 research outputs found
Psychoacoustic Considerations in Surround Sound with Height
This paper presents recent research findings in the psychoacoustics of 3D multichannel sound recording and
rendering. The addition of height channels in new reproduction formats such as Auro-3D, Dolby Atmos and 22.2,
etc. enhances the perceived spatial impression in reproduction. To achieve optimal acoustic recording and signal
processing for such formats, it is first important to understand the fundamental principles of how we perceive sounds
reproduced from vertically oriented stereophonic loudspeakers. Recent studies by the authors in this field provide
insights into how such principles can be applied for practical 3D recording and upmixing. Topics that are discussed
in this paper include the interchannel level and time difference relationships in terms of vertically induced
interchannel crosstalk, the effectiveness of the precedence effect in the vertical plane, the aspect of tonal coloration
resulting from vertical stereophonic reproduction, the effect of vertical microphone spacing on envelopment, the
effect of interchannel decorrelation, and the use of spectral cues for extending vertical image spread
Engineering novel complement activity into a pulmonary surfactant protein
Complement neutralizes invading pathogens, stimulates inflammatory and adaptive immune responses, and targets non- or altered-self structures for clearance. In the classical and lectin activation pathways, it is initiated when complexes composed of separate recognition and activation subcomponents bind to a pathogen surface. Despite its apparent complexity, recognition-mediated activation has evolved independently in three separate protein families, C1q, mannose-binding lectins (MBLs), and serum ficolins. Although unrelated, all have bouquet-like architectures and associate with complement-specific serine proteases: MBLs and ficolins with MBL-associated serine protease-2 (MASP-2) and C1q with C1r and C1s. To examine the structural requirements for complement activation, we have created a number of novel recombinant rat MBLs in which the position and orientation of the MASP-binding sites have been changed. We have also engineered MASP binding into a pulmonary surfactant protein (SP-A), which has the same domain structure and architecture as MBL but lacks any intrinsic complement activity. The data reveal that complement activity is remarkably tolerant to changes in the size and orientation of the collagenous stalks of MBL, implying considerable rotational and conformational flexibility in unbound MBL. Furthermore, novel complement activity is introduced concurrently with MASP binding in SP-A but is uncontrolled and occurs even in the absence of a carbohydrate target. Thus, the active rather than the zymogen state is default in lectin·MASP complexes and must be inhibited through additional regions in circulating MBLs until triggered by pathogen recognition
A new map-making algorithm for CMB polarisation experiments
With the temperature power spectrum of the cosmic microwave background (CMB)
at least four orders of magnitude larger than the B-mode polarisation power
spectrum, any instrumental imperfections that couple temperature to
polarisation must be carefully controlled and/or removed. Here we present two
new map-making algorithms that can create polarisation maps that are clean of
temperature-to-polarisation leakage systematics due to differential gain and
pointing between a detector pair. Where a half wave plate is used, we show that
the spin-2 systematic due to differential ellipticity can also by removed using
our algorithms. The algorithms require no prior knowledge of the imperfections
or temperature sky to remove the temperature leakage. Instead, they calculate
the systematic and polarisation maps in one step directly from the time ordered
data (TOD). The first algorithm is designed to work with scan strategies that
have a good range of crossing angles for each map pixel and the second for scan
strategies that have a limited range of crossing angles. The first algorithm
can also be used to identify if systematic errors that have a particular spin
are present in a TOD. We demonstrate the use of both algorithms and the ability
to identify systematics with simulations of TOD with realistic scan strategies
and instrumental noise.Comment: 11 pages, 6 figure
Optimal scan strategies for future CMB satellite experiments
The B-mode polarisation power spectrum in the Cosmic Microwave Background
(CMB) is about four orders of magnitude fainter than the CMB temperature power
spectrum. Any instrumental imperfections that couple temperature fluctuations
to B-mode polarisation must therefore be carefully controlled and/or removed.
We investigate the role that a scan strategy can have in mitigating certain
common systematics by averaging systematic errors down with many crossing
angles. We present approximate analytic forms for the error on the recovered
B-mode power spectrum that would result from differential gain, differential
pointing and differential ellipticity for the case where two detector pairs are
used in a polarisation experiment. We use these analytic predictions to search
the parameter space of common satellite scan strategies in order to identify
those features of a scan strategy that have most impact in mitigating
systematic effects. As an example we go on to identify a scan strategy suitable
for the CMB satellite proposed for the ESA M5 call. considering the practical
considerations of fuel requirement, data rate and the relative orientation of
the telescope to the earth. Having chosen a scan strategy we then go on to
investigate the suitability of the scan strategy.Comment: 21 pages, 11 figures, Comments welcom
Design of experiment for the optimisation of deep reactive ion etching of silicon inserts for micro-fabrication
The following paper describes a design of experiments investigation of the deep reactive of pillar structures on a silicon wafer. The etched wafers would subsequently be used as masters for the fabrication of nickel mould inserts for microinjection moulding. Undercuts occur when the pillar base has a smaller cross-section than the apex of the pillar. They therefore affect tolerances of the subsequent nickel mould, its strength and its de-mouldability from the silicon form. The response measured in these experiments was the degree of undercut of micro-scale (10 μm x 10 μm x 40 μm, 5 μm x 5 μm x 40 μm and 2 μm x 2 μm x 40 μm) The literature suggests that gas pressure, platen power, gas flow rate, phase switching times and mask size can all affect the degree of undercut. After examination of this literature, and of manufacturers guidelines, three parameters were selected for experimental testing: platen power, C 4F 8 gas flow rate during the passivation phase and switching times. Switching times was found to be the only statistically significant parameter for both 10x10 μm and 5x5 μm pillars. The 2x2 μm pillars were not successfully replicated and could therefore not undergo statistical evaluation
Sparse image reconstruction on the sphere: analysis and synthesis
We develop techniques to solve ill-posed inverse problems on the sphere by
sparse regularisation, exploiting sparsity in both axisymmetric and directional
scale-discretised wavelet space. Denoising, inpainting, and deconvolution
problems, and combinations thereof, are considered as examples. Inverse
problems are solved in both the analysis and synthesis settings, with a number
of different sampling schemes. The most effective approach is that with the
most restricted solution-space, which depends on the interplay between the
adopted sampling scheme, the selection of the analysis/synthesis problem, and
any weighting of the l1 norm appearing in the regularisation problem. More
efficient sampling schemes on the sphere improve reconstruction fidelity by
restricting the solution-space and also by improving sparsity in wavelet space.
We apply the technique to denoise Planck 353 GHz observations, improving the
ability to extract the structure of Galactic dust emission, which is important
for studying Galactic magnetism.Comment: 11 pages, 6 Figure
Removing beam asymmetry bias in precision CMB temperature and polarisation experiments
Asymmetric beams can create significant bias in estimates of the power
spectra from CMB experiments. With the temperature power spectrum many orders
of magnitude stronger than the B-mode power spectrum any systematic error that
couples the two must be carefully controlled and/or removed. Here, we derive
unbiased estimators for the CMB temperature and polarisation power spectra
taking into account general beams and general scan strategies. A simple
consequence of asymmetric beams is that, even with an ideal scan strategy where
every sky pixel is seen at every orientation, there will be residual coupling
from temperature power to B-mode power if the orientation of the beam asymmetry
is not aligned with the orientation of the co-polarisation. We test our
correction algorithm on simulations of two temperature-only experiments and
demonstrate that it is unbiased. The simulated experiments use realistic scan
strategies, noise levels and highly asymmetric beams. We also develop a
map-making algorithm that is capable of removing beam asymmetry bias at the map
level. We demonstrate its implementation using simulations and show that it is
capable of accurately correcting both temperature and polarisation maps for all
of the effects of beam asymmetry including the effects of temperature to
polarisation leakage.Comment: 18 pages, 9 figure
Removing beam asymmetry bias in precision CMB temperature and polarisation experiments
Asymmetric beams can create significant bias in estimates of the power
spectra from CMB experiments. With the temperature power spectrum many orders
of magnitude stronger than the B-mode power spectrum any systematic error that
couples the two must be carefully controlled and/or removed. Here, we derive
unbiased estimators for the CMB temperature and polarisation power spectra
taking into account general beams and general scan strategies. A simple
consequence of asymmetric beams is that, even with an ideal scan strategy where
every sky pixel is seen at every orientation, there will be residual coupling
from temperature power to B-mode power if the orientation of the beam asymmetry
is not aligned with the orientation of the co-polarisation. We test our
correction algorithm on simulations of two temperature-only experiments and
demonstrate that it is unbiased. The simulated experiments use realistic scan
strategies, noise levels and highly asymmetric beams. We also develop a
map-making algorithm that is capable of removing beam asymmetry bias at the map
level. We demonstrate its implementation using simulations and show that it is
capable of accurately correcting both temperature and polarisation maps for all
of the effects of beam asymmetry including the effects of temperature to
polarisation leakage.Comment: 18 pages, 9 figure
Sparse Bayesian mass-mapping with uncertainties: hypothesis testing of structure
A crucial aspect of mass-mapping, via weak lensing, is quantification of the
uncertainty introduced during the reconstruction process. Properly accounting
for these errors has been largely ignored to date. We present results from a
new method that reconstructs maximum a posteriori (MAP) convergence maps by
formulating an unconstrained Bayesian inference problem with Laplace-type
-norm sparsity-promoting priors, which we solve via convex
optimization. Approaching mass-mapping in this manner allows us to exploit
recent developments in probability concentration theory to infer theoretically
conservative uncertainties for our MAP reconstructions, without relying on
assumptions of Gaussianity. For the first time these methods allow us to
perform hypothesis testing of structure, from which it is possible to
distinguish between physical objects and artifacts of the reconstruction. Here
we present this new formalism, demonstrate the method on illustrative examples,
before applying the developed formalism to two observational datasets of the
Abel-520 cluster. In our Bayesian framework it is found that neither Abel-520
dataset can conclusively determine the physicality of individual local massive
substructure at significant confidence. However, in both cases the recovered
MAP estimators are consistent with both sets of data
- …
