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A B S T R A C T 

A crucial aspect of mass mapping, via weak lensing, is quantification of the uncertainty introduced during the reconstruction 

process. Properly accounting for these errors has been largely ignored to date. We present a new method to reconstruct maximum 

a posteriori (MAP) convergence maps by formulating an unconstrained Bayesian inference problem with Laplace-type l 1 -norm 

sparsity-promoting priors, which we solve via conv e x optimization. Approaching mass mapping in this manner allows us to 

e xploit recent dev elopments in probability concentration theory to infer theoretically conserv ati ve uncertainties for our MAP 

reconstructions, without relying on assumptions of Gaussianity. For the first time, these methods allow us to perform hypothesis 
testing of structure, from which it is possible to distinguish between physical objects and artefacts of the reconstruction. Here, 
we present this new formalism, and demonstrate the method on simulations, before applying the developed formalism to two 

observational data sets of the Abell 520 cluster. Initial reconstructions of the Abell 520 catalogues reported the detection of an 

anomalous ‘dark core’ – an o v erdense re gion with no optical counterpart – which was taken to be evidence for self-interacting 

dark matter. In our Bayesian framework, it is found that neither Abell 520 data set can conclusively determine the physicality of 
such dark cores at 99 per cent confidence. Ho we ver, in both cases the reco v ered MAP estimators are consistent with both sets of 
data. 

Key words: gravitational lensing: weak – methods: data analysis – methods: statistical – techniques: image processing – dark 

matter. 
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 I N T RO D U C T I O N  

ravitational lensing is an astrophysical phenomenon, which can be
bserved on galactic to cosmic spatial scales, through which distant
mages are distorted by the intervening mass density field. Due to its
ature, lensing is sensitive to the total mass distribution (both visible
nd invisible) along a line of sight (Bartelmann & Schneider 2001 ;
chneider 2005 ; Munshi et al. 2008 ; Heavens 2009 ). Therefore, as

he majority of massive structures in the universe are predominantly
ark matter, lensing provides a novel way to probe the nature of dark
atter itself. Weak gravitational lensing (WL) is a regime in which

ne makes the approximation that lensed sources have (at no time)
ome radially closer than an Einstein radius to the intervening mass
oncentrations – which ensures that sources are not multiply imaged.
he effect of weak lensing on distant source galaxies is two-fold: the
alaxy size is magnified by a convergence field κ and the galaxy
llipticity (third flattening) is perturbed from an underlying intrinsic
alue by a shearing field γ . 

Due to the mass-sheet de generac y, the weak lensing convergence
eld is not directly observable. In the weak lensing regime, the
hearing field does not suffer such degeneracies and can accurately
e modelled from observed ellipticities. Therefore, observations of γ
 E-mail: m.price.17@ucl.ac.uk 
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re typically inverted to recover estimators of κ . Such estimators are
olloquially named dark matter mass maps , and constitute one of the
rincipal observables for cosmology (Clowe et al. 2006 ). Standard
osmological protocol is to extract weak lensing information in
he form of second-order statistics (Kilbinger 2015 ; Alsing et al.
016 ; Taylor et al. 2018 ), which are then compared to theory.
n this approach, mass maps are not required. Ho we ver, as two-
oint global statistics are by definition sensitive only to Gaussian
ontributions, and weak lensing is inherently non-Gaussian, it is
nformative to consider higher order statistics (Coles & Chiang 2000 ;

unshi & Coles 2017 ). Many higher order statistical techniques can
e performed directly on mass maps ( κ-fields), which moti v ates
nvestigation into alternate mass-map reconstruction methodologies.

Reconstructing mass maps from shear observations requires solv-
ng an ill-posed (often seriously) inverse problem. Many approaches
o solving this lensing inverse problem have been developed (e.g.
aiser & Squires 1993 ; VanderPlas et al. 2011 ; Lanusse et al.
016 ; Wallis et al. 2017 ; Chang et al. 2018 ; Jeffrey et al. 2018 ),
ith the industry standard being Kaiser–Squires (KS; Kaiser &
quires 1993 ). Although these approaches often produce reliable
onv ergence estimators, the y lack principled statistical approaches
o uncertainty quantification and often assume Gaussianty during
he reconstruction process, or post-process by Gaussian smoothing,
hich is suboptimal when one wishes to analyse small-scale non-
aussian structure. 
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Most methods refrain from quantifying uncertainties in recon- 
tructions, but those that do often do so by assuming Gaussian 
riors and adopting Markov chain Monte Carlo (MCMC) techniques 
Corless, King & Clowe 2009 ; Schneider et al. 2015 ; Alsing et al.
016 ).The computational cost of MCMC approaches is large. Recent 
evelopments in probability concentration theory have led to ad- 
ancements in fast approximate uncertainty quantification techniques 
Cai, Pereyra & McEwen 2017a , b ; Pereyra 2017 ). 

In this article, we present a new mass-mapping formalism. We 
ormulate the lensing inverse problem as a sparse hierarchical 
ayesian inference problem from which we derive an unconstrained 
onv e x optimization problem. We solve this optimization problem 

n the analysis setting, with a wavelet-based, sparsity-promoting, 
 1 -norm prior – similar priors have been shown to be effective 
n the weak lensing setting (Leonard, Lanusse & Starck 2014 ; 
anusse et al. 2016 ; Peel, Lanusse & Starck 2017 ; Jeffrey et al.
018 ). Formulating the problem in this way allows us, for the
rst time, to reco v er maximum a posteriori (MAP) estimators,
rom which we can exploit analytical methods (Cai et al. 2017b ;
ereyra 2017 ) to recover approximate highest posterior density 
HPD) credible regions, and perform hypothesis testing of struc- 
ure in a variety of ways. We apply our algorithm to a range
f catalogues drawn from N -body simulations – Bolshoi cluster 
atalogues (Klypin, Trujillo-Gomez & Primack 2011 ) – and the 
ebated Abell 520 (A520) cluster catalogues (Clowe et al. 2012 ; Jee
t al. 2014 ). We then demonstrate the aforementioned uncertainty 
uantification techniques on our MAP reconstructions from these 
atalogues. 

The structure of this article is as follows. In Section 2, we provide
 brief o v erview of the weak lensing paradigm and motivate a
parsity-based approach. In Section 3, we provide the details of 
ur algorithm, as well as some updates to super-resolution image 
eco v ery. In Section 4, we present the uncertainty quantification 
echniques, both mathematically and mechanistically. In Sections 5 
nd 6, we apply both our reconstruction algorithm and the uncertainty 
uantification techniques to the aforementioned data sets and analyse 
he results. Finally, in Section 7, we draw conclusions from this work
nd propose future avenues of research. 

Section 3 relies on a moderate level of understanding in the fields
f proximal calculus and compressed sensing, and Section 4 relies 
n a general understanding of Bayesian inference. As such, for the 
eader solely interested in practical application of these techniques, 
e recommend Section 5 onwards. 

 W E A K  G R AV I TAT I O NA L  LENSING  

he following section presents a brief re vie w of the mathematical
ackground rele v ant to the weak lensing formalism, though a deeper
escription can be found in popular re vie w articles (Bartelmann &
chneider 2001 ; Schneider 2005 ). 

.1 Weak lensing regime 

ravitational lensing refers to the deflection of distant photons as 
hey propagate from their origin to us, the observer. This deflection 
s caused by local Newtonian potentials that are, in turn, sourced by
he total local matter o v er- or underdensity. As such, weak lensing
s sensitive to both the visible and invisible matter distribution –
aking it an ideal probe of dark matter in the Universe. 
The WL regime is satisfied when propagating photons (from a 

istant source) have an angular position on the source plane β
relative to the line of sight from observer through the lensing mass)
reater than the Einstein radius θE of the intervening mass. This 
ssertion ensures that the solution of the first-order lens equation is
ingular: 

= θ − θ2 
E 

θ

| θ | 2 , (1) 

here the Einstein radius is defined to be 

E = 

√ 

4 GM 

c 2 

f K 

( r − r ′ ) 
f K 

( r) f K 

( r ′ ) 
, (2) 

here f K is the angular diameter distance in a cosmology with
urvature K , c is the speed of light in a vacuum, G is the gravitational
onstant, and M is the lensing mass. Perhaps more generally, the
eak lensing regime can be defined as convergence fields for which
� 1 – ensuring that the shear signal remains linear. 
Due to the sparse nature of the distribution of galaxies across

he sky, most sources are (to a good approximation) within the WL
egime. The WL effect is best expressed in terms of a lensing potential
, defined to be the integral of the Newtonian potential � along a
iven line of sight: 

( r, ω ) = 

2 

c 2 

∫ r 

0 
d r ′ 

f K 

( r − r ′ ) 
f K 

( r) f K 

( r ′ ) 
� ( r ′ , ω ) , (3) 

here r and r 
′ 

are comoving distances, and ω = ( θ , ψ) are angular
pherical coordinates. The local Newtonian potential must satisfy 
he Poisson equation and as such is related to the matter o v erdensity
eld: 

 

2 � ( r , ω) = 

3 �M 

H 

2 
0 

2 a( r ) 
δ( r , ω) , (4) 

here �M 

is the matter density parameter, H 0 is the current Hubble
onstant, a ( r ) is the scale factor, and δ is the fractional o v erdensity. 

To first order, there are two primary ways in which light from
istant sources is distorted by this lensing potential. Images are 
agnified by a spin-0 convergence field κ and sheared by a spin-
 shear field γ . These quantities can be shown (Bartelmann &
chneider 2001 ) to be related to the lensing potential by 

( r , ω) = 

1 

4 
( ð ̄ð + ð̄ ð ) φ( r, ω) , (5) 

( r, ω) = 

1 

2 
ðð φ( r, ω) , (6) 

here ð and ð̄ are the spin s raising and lowering operators 
espectively and are in general defined to be, 

 ≡ − sin s θ
( ∂ 

∂θ
+ 

i∂ 

sin θ∂ψ 

)
sin −s θ, (7) 

¯
 ≡ − sin −s θ

( ∂ 

∂θ
− i∂ 

sin θ∂ψ 

)
sin s θ. (8) 

here we have omitted spin subscripts for clarity. 

.2 Standard mass-mapping techniques 

ypically, we wish to make inferences about the projected matter 
 v erdensity δ( r , ω) that is most directly accessible by inverting the
ntegral equation (Schneider 2005 ) 

( r , ω ) = 

3 �M 

H 

2 
0 

2 c 2 

∫ r 

0 
d r ′ 

f K 

( r ′ ) f K 

( r − r ′ ) 
f K 

( r) 

δ( f K 

( r ′ ) r ′ , r ′ ) 
a( r) 

. (9) 

This poses a difficulty as the convergence κ is only determined 
o the de generac y κ → κ

′ = ηκ + (1 − η) and is therefore not
MNRAS 506, 3678–3690 (2021) 



3680 M. A. Price et al. 

d  

s  

o  

w  

γ  

γ

 

p  

W

ð

C  

i

γ

w

D

H  

n  

–  

S
 

i

κ

w  

K  

f  

c  

b  

c  

K  

i  

a  

w  

W

3

S  

c  

h  

w  

L
 

g  

t  

c  

u  

a  

r  

i
 

m  

e  

g  

e  

a  

c  

o

3

H  

f  

r  

u
 

B

p

w  

N  

n  

i  

t  

w  

B  

t  

d

T  

p  

f  

a  

fi  

c  

s

3

L  

u  

o  

m

�

H  

d  

o  

f  

c  

m

γ

w  

σ  

m  

<

 

t  

o  

a  

�  

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/3/3678/6319513 by U
niversity C

ollege London user on 27 M
ay 2022
irectly observable – this de generac y is often referred to as the mass-
heet degeneracy . Ho we ver, as the intrinsic ellipticity distribution
f galaxies has zero mean, if one averages many galaxy ellipticities
ithin a given pixel the true shear γ can be reco v ered – which makes
an observable field. As such one typically collects observations of
that are and subsequently used to construct estimators of κ . 
For small sky fractions, we can approximate the field of view as a

lane (though this approximation degrades quickly with sky fraction;
allis et al. 2017 ). In this planar approximation, ð and ð̄ reduce to 

 ≈ −( ∂ x + i∂ y ) and ð̄ ≈ −( ∂ x − i∂ y ) . (10) 

ombining equations (5) and (6), we find the planar forward model
n Fourier space: 

ˆ ( k x , k y ) = D k x ,k y ̂  κ( k x , k y ) , (11) 

ith the mapping operator being, 

 k x ,k y = 

k 2 x − k 2 y + 2 ik x k y 
k 2 x + k 2 y 

. (12) 

ereafter, we drop the k x , k y subscripts for clarity. It is informative to
ote that this forward model is undefined at the origin ( k = 

√ 

k 2 x + k 2 y = 0 )
which corresponds to the mass-sheet de generac y (Bartelmann &

chneider 2001 ) 
The most naive inversion of this forward model is KS

nversion, 

ˆ KS = D 

−1 ˆ γ , (13) 

hich is direct inversion in Fourier space (Kaiser & Squires 1993 ).
S inversion of the forward model, given by equation (11), per-

orms adequately, provided the space over which it is defined is
omplete, and the sky fraction is small. Ho we ver, masking and survey
oundaries are inherent in typical WL surv e ys, leading to significant
ontamination of the KS estimator. Often maps reco v ered with the
S estimator are convolved with a Gaussian kernel to reduce the

mpact of these contaminations but this is suboptimal. This smooths
way a large fraction of the small-scale non-Gaussian information,
hich cosmologists are increasingly interested in extracting from
L surv e ys. 

 SPARSE  M A P  ESTIMATORS  

everal alternate approaches for solving the inverse problem between
onvergence κ and shear γ that do not assume or impose Gaussianity
ave been proposed, some of which are based on the concept of
avelets and sparsity (Pires, Starck & Amara 2009 ; Jullo et al. 2014 ;
anusse et al. 2016 ; Peel et al. 2017 ). 
We propose a mass-mapping algorithm that relies on sparsity in a

iv en wav elet dictionary. Moreo v er, we formulate the problem such
hat we can exploit recent developments in the theory of probability
oncentration, which have been developed further to produce novel
ncertainty quantification techniques (Pereyra 2017 ). Crucially, this
llows us to reco v er principled statistical uncertainties on our MAP
econstructions (as in Cai et al. 2017a , b ) as will be discussed in detail
n the following section. 

As mentioned previously, galaxies have an intrinsic ellipticity. To
itigate the effect of intrinsic ellipticity we choose to project the

llipticity measurements on to a grid and average. If we assume that
alaxies have no preferential orientation in the absence of lensing
ffects, then the average intrinsic ellipticity tends to zero. This is
 good approximation for the purposes of this paper, but weak
NRAS 506, 3678–3690 (2021) 
orrelation between the intrinsic alignments of galaxies has been
bserv ed (Trox el & Ishak 2015 ; Piras et al. 2018 ). 

.1 Hierarchical Bayesian framework 

ierarchical Bayesian inference provides a rigorous mathematical
ramework through which theoretically optimal solutions can be
eco v ered. Moreo v er, it allows one to construct measures of the
ncertainty on reco v ered point estimates. 
As is common for hierarchical Bayesian models, we begin from

ayes’ theorem for the posterior distribution, 

 ( κ| γ ) = 

p ( γ | κ) p ( κ) ∫ 
C N p ( γ | κ) p ( κ)d κ

, (14) 

here p ( γ | κ) is the likelihood function representing data fidelity,
 is the dimensionality of κ , and p ( κ) is a prior on the statistical
ature of κ . The denominator is called the Bayesian evidence that
s constant and so can be dropped for our purposes. Typically,
he Bayesian evidence is used for model comparison, which we
ill not be considering within the context of this paper. Given
ayes’ theorem, and the monotonicity of the logarithm func-

ion, we can easily show that the maximum posterior solution is
efined by, 

argmax 
κ

{ p( κ| γ ) } = argmin 
κ

{− log ( p( κ| γ ) ) } . (15) 

his step is crucial, as it allows us to solve the more straightforward
roblem of minimizing the log-posterior rather than maximizing the
ull posterior. Conveniently, in most physical situations the operators
ssociated with the log-posterior are conv e x. Dra wing from the
eld of conv e x optimization, the optimal solution for the posterior
an be reco v ered e xtremely quickly – ev en in high dimensional
ettings. 

.2 Sparsity and inverse problems 

et γ ∈ C 

M be the discretized complex shear field extracted from an
nderlying discretized convergence field κ ∈ C 

N by a measurement
perator � ∈ C 

M×N : κ 
→ γ . In the planar setting, � can be
odelled by, 

 = M F 

−1 D F . (16) 

ere, F is the discrete fast Fourier transform (FFT), F 

−1 is the inverse
iscrete fast Fourier transform (IFFT), M is a standard masking
perator, and D is a diagonal matrix applying the scaling of the
orward model in Fourier space as defined in equation (12). In the
ase of independent and identically distributed i.i.d. Gaussian noise,
easurement of γ will be contaminated such that 

= � κ + N (0 , σ 2 
i ) , (17) 

here N (0 , σ 2 
i ) ∈ C 

M is additive i.i.d. Gaussian noise of variance
2 
i for pixel i . Often in WL experiments, the total number of binned
easurements is less than the number of pixels to be recovered, M
 N , and the inverse problem becomes ill-posed. 
In such a setting, the Bayesian likelihood function (data fidelity

erm) is given by the product of Gaussian likelihoods defined
n each pixel with pixel noise variance σ 2 

i , which is to say
n o v erall multi v ariate Gaussian likelihood of kno wn cov ariance
 = diag ( σ1 , σ2 , . . . , σM 

) ∈ R 

M×M . Let � i κ be the value of � κ at
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ixel i , then the overall likelihood is then defined as, 

( γ | κ) ∝ 

M ∏ 

i= 0 

exp 

(−( � i κ − γi ) 2 

2 σ 2 
i 

)
= 

M ∏ 

i= 0 

exp 

(−1 

2 
( ̄� i κ − γ̄i ) 

2 

)
, 

= p( γ | κ) ∝ exp 

(−‖ ̄� κ − γ̄ ‖ 2 2 

2 

)
, (18) 

here ‖·‖ 2 is the � 2 -norm and �̄ = � 

− 1 
2 � is a composition of

he measurement operator and an inverse covariance weighting. 
f fecti v ely, this co variance weighting leads to measurements γ̄ =
 

− 1 
2 γ that whiten the typically non-uniform noise variance in the 

bservational data γ . 
This likelihood function allows one to map from the number 

ount of observations per pixel to a corresponding noise variance 
assuming an intrinsic ellipticity dispersion of ∼0.37), from which 
he noise (under and central limit theory argument of Gaussianity) 
ay be correctly incorporated into the reconstruction. In practice, this 

equires only the number density of observations per pixel, which is
rivially inferred from raw observational data catalogues. 

To regularize this inverse problem, we then define a sparsity 
romoting Laplace-type prior: 

( κ) ∝ exp ( −μ‖ � 

† κ‖ 1 ) , (19) 

here � is an appropriately selected wavelet dictionary, and μ ∈ R + 

s a regularization parameter – ef fecti vely a weighting between 
ikelihood and prior. Note that one may choose any convex log- 
rior within this formalism e.g. an � 2 -norm prior from which one
ssentially reco v ers Weiner filtering (see Padmanabhan, Seljak & 

en 2003 ; Horowitz, Seljak & Aslanyan 2018 , for alternate iterative
einer filtering approaches). From equations (14) and (15), the 

nconstrained optimization problem that minimizes the log-posterior 
s, 

map = argmin 
κ

{
μ‖ � 

† κ‖ 1 + 

‖ ̄� κ − γ ‖ 2 2 

2 

}
, (20) 

here the bracketed term is called the objective function . To solve
his conv e x optimization problem, we adopt a forw ard–backw ard
plitting algorithm (e.g. Combettes & Pesquet 2009 ). A full descrip- 
ion of this algorithm applied in the current context is outlined in Cai
t al. ( 2017b ). 

Let f ( κ) = μ‖ � 

† κ‖ 1 denote our prior term, and g( κ) =
 ̄� κ − γ ‖ 2 2 / 2 denote our data fidelity term. Then our optimization
roblem can be re-written compactly as, 

argmin 
κ

{
f ( κ) + g( κ) 

}
. (21) 

he forw ard–backw ard iteration step is then defined to be, 

( i+ 1) = prox λ( i) f ( κ
( i) − λ( i) ∇g( κ ( i) )) , (22) 

or iteration i , with gradient, 

g( κ) = �̄ 

† ( � κ − γ ) . (23) 

f the wavelet dictionary � is a tight frame (i.e. � 

† � = I ), the
roximity operator is given by, 

rox λf ( z) = z + � ( soft λμ( � 

† z) − � 

† z) , (24) 

here soft λ( z) is the point-wise soft-thresholding operator (Com- 
ettes & Pesquet 2009 ) and λ is a parameter related to the step size
which is in turn related to the Lipschitz differentiability of the log-
rior) that should be set according to Cai et al. ( 2017b ). The iterative
lgorithm is given explicitly in the primary iterations of algorithm 1. 
P  
daptations for frames that are not tight can be found in Cai et al.
 2017b ) and are readily available within our framework. 

Our algorithm has distinct similarities to the GLIMPSE algorithm 

resented by Lanusse et al. ( 2016 ), but crucially differs in several
spects. Most importantly we formulate the problem in a hierarchical 
ayesian framework that allows us to reco v er principled statistical
ncertainties. In addition to this we include Bayesian inference of 
he regularization parameter, a robust estimate of the noise level 
which can be folded into the hierarchical model), and we use super-
esolution operators instead of non-discrete fast Fourier transforms. 

lgorithm 1 Forw ard-backw ard analysis algorithm 

Input: γ ∈ C 

M , κ (0) ∈ C 

N , λ, μ(0) = i = t = 0, T 1 , T 2 ∈ R + 

Output: κmap ∈ C 

N , μ ∈ R + 

recomputation: 
o: 
1: Calculate κ ( t) = argmin κ

{
f ( κ) + g( κ) 

}
, 

2: Update μ( t+ 1) = 

( N/k ) + α−1 
f ( κ( t) ) + β

, 
3: t = t + 1, 
4: On convergence, μ becomes fixed. 

ntil: Iteration limit reached. 
rimary Iterations: 
o: 
1: update ν( i+ 1) = κ ( i) − λ�̄ 

† ( ̄� κ ( i) − γ ), 
2: compute η = � 

† ν( i+ 1) , 
3: update κ ( i+ 1) = ν( i+ 1) + � ( soft λμ( η) − η), 
4: i = i + 1. 

ntil: Stopping criterion satisfied. 

.e. ‖ κ( i) −κ( i+ 1) ‖ 2 
‖ κ( i) ‖ 2 < T 1 and obj ( κ( i) ) −obj ( κ( i+ 1) ) 

obj ( κ( i) ) 
< T 2 . 

.3 Reduced shear 

ue to a de generac y between γ and κ , the true observable quantity
s in fact the reduced shear g (Bartelmann & Schneider 2001 ), 

 = 

γ

1 − κ
. (25) 

eep in the weak lensing regime one can safely approximate γ ≈
 � 1, which ensures that the optimization problem remains linear. 
o we v er, when reconstructing re gions close to massiv e structures

galaxy clusters) this approximation is no longer strictly valid and we
ust unravel this additional factor. We adopt the procedure outlined 

n Wallis et al. ( 2017 ), which we also outline schematically in Fig. 1
this method can be found in detail in Mediavilla et al. ( 2016 , p.

53). We find that these corrections typically converge after ∼5–10 
terations. 

.4 Regularization parameter selection 

ne key issue of sparsity-based reconstruction methods is the 
election of the regularization parameter μ. Several methodologies 
av e arisen (P aykari et al. 2014 ; Lanusse et al. 2016 ; Peel et al. 2017 ;
effrey et al. 2018 ) for selecting μ, though often the regularization
arameter is chosen somewhat arbitrarily – as the integrity of the 
AP solution is assumed to be weakly dependent on the choice

f μ. Ho we v er, to e xtract principled statistical uncertainties on the
eco v ered images, one must select this parameter in a principled
tatistical manner. 

We apply the hierarchical Bayesian formalism developed by 
ereyra, Bioucas-Dias & Figueiredo ( 2015 ) – the details of which are
MNRAS 506, 3678–3690 (2021) 
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Figure 1. Schematic of reduced shear iterations. An initial guess of the MAP 
solution κmap 

i is constructed; the current best shear estimates γ i are then used 
in tandem to construct a new estimate of the true shear field γ i + 1 . 
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legantly presented by the authors. Though we will outline roughly
he underlying argument here. 

First define a sufficient statistic f to be k -homogeneous if ∃ k ∈ R + 

uch that, 

 ( ηx) = ηk f ( x) , ∀ x ∈ R 

N , ∀ η > 0 . (26) 

ll norms, composite norms and composition of norms with linear
perators are 1-homogeneous – and so our � 1 -norm has k of 1. If a
ufficient statistic f is k -homogeneous, then the normalization factor
 ( μ) of p ( κ| μ) is given by (Pereyra et al. 2015 ), 

( μ) = Aμ−N/k , (27) 

here A is a constant independent from μ. The proposed Bayesian
nference model then implements a gamma-type hyper-prior – which
s a typical hyper-prior for scale parameters, 

( μ) = 

βα

� ( α) 
μα−1 e −βμI R + ( μ) , (28) 

here without loss of generality α = β = 1. The result is ef fecti vely
nsensitive to their value (in numerical experiments values of α, β ∈
10 −2 , 10 5 ] produced essentially no difference in μ). 

Now, let us extend the inference problem of the log-posterior to the
ase where μ is an additionally unknown parameter. In this context,
e compute the joint MAP estimator ( κmap , μmap ) ∈ C 

N × R + 

which
aximizes p ( κ , μ| γ ) such that, 

 N+ 1 ∈ ∂ κ,μ log p( κmap , μmap | γ ) , (29) 

here 0 i is the i -dimensional null vector and ∂ s h ( s 
′ 
) is the set of

ubgradients of function h ( s ) at s 
′ 
. This in turn implies both that, 

 N ∈ ∂ κ log p( κmap , μmap | γ ) , (30) 

nd 

 ∈ ∂ μ log p( κmap , μmap | γ ) . (31) 
NRAS 506, 3678–3690 (2021) 
From equation (30), we reco v er the optimization problem with
nown regularization parameter μ given in equation (20). However,
rom equations (27), (28), and (31), it follows that the MAP
egularization parameter μ is given by (Pereyra et al. 2015 ), 

map = 

N 
k 

+ α − 1 

f ( κmap ) + β
, (32) 

here we recall that N is the total dimension of our convergence
pace. 

It is precisely this optimal μ value that we wish to use in our
ierarchical Bayesian model. Hereafter, we drop the map superscript
rom μ for clarity. To calculate μ we perform preliminary iterations
efined by 

( t) = argmin 
κ

{ f ( κ; μ( t) ) + g( κ) } , (33) 

here g ( κ) is our likelihood term and, 

( t+ 1) = 

N 
k 

+ α − 1 

f ( κ ( t) ) + β
. (34) 

ypically, we find that these preliminary iterations take ∼5–10
terations to converge, and recover close to optimal parameter
election for a range of test cases – note that here the optimal selection
f μ is that which maximizes the SNR of a reco v ered image. 
Another factor that can influence the quality of reconstructions

s the selection of wavelet dictionary. In this paper, we consider
aubechies (eight levels) and SARA dictionaries (Carrillo, McEwen
 Wiaux 2012 ; Carrillo et al. 2013 ), though a wide variety of wavelet

ictionaries exist, see e.g. starlets (Starck, Murtagh & Fadili 2015 ).
he eight-level SARA dictionary is a combination of the Dirac and
aubechies 1–8 wavelet dictionaries. It is important to note that we
se the SARA dictionary, not the complete SARA scheme (Carrillo
t al. 2012 , 2013 ), which involv es an iterativ e re-weighting scheme
hat is not considered here. 

.5 Super-resolution image reco v ery 

ridding of weak lensing data is advantageous in that it can
rovide a good understanding of the noise properties – a neces-
ary feature for principled uncertainty quantification. Ho we ver, an
nherent drawback of projecting data into a grid is the possibility of
reating an incomplete space due to low sampling density – often
eferred to as masking. Decomposition of spin signals on bounded
anifolds is inherently degenerate (Bunn et al. 2003b ); specifically

he orthogonality of eigenfunctions is locally lost at the manifold
oundaries, leading to signal leakage between Fourier (or on the
phere, harmonic) modes. 

One approach to mitigate this problem is to a v oid the necessity
f gridding by substituting a non-uniform discrete Fourier transform
NFFT) into the RHS of equation (16) as presented by Lanusse
t al. ( 2016 ). A downside of this NFFT approach is that the noise is
ore difficult to handle, leading to complications when considering

ncertainty quantification. Another approach is to perform super-
esolution image reco v ery, which we present in the context of our
lgorithm. 

Suppose the dimension of our gridded measurement space is M , as
efore, and the desired dimension of our solution space is N 

′ 
, where

 

′ ≥ N . In this setting, we have shear measurements γ ∈ C 

M and
eco v ered conv ergence κ ∈ C 

N ′ . Let us now define a super-resolution
subscript SR) measurement operator to be, 

 SR = M F 

−1 
lr D Z F hr (35) 

art/stab1983_f1.eps
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here F hr is a high-resolution (dimension N 

′ 
) fast Fourier transform, 

 ∈ C 

N ×N ′ is a Fourier space down-sampling which maps ˜ κ ′ ∈ C 

N ′ 

n to ˜ κ ∈ C 

N , where tilde represents Fourier coefficients, D is the 
lanar forward model given by equation (11), and M is a standard 
asking operator. Finally, F 

−1 
lr is a low resolution (dimension M ) 

nv erse fast F ourier transform. F or completeness, the super-resolution 
djoint measurement operator is given by, 

 

† 
SR = F 

−1 
hr Z 

† D 

† F lr M 

† , (36) 

here M 

† is adjoint masking (gridding), D 

† is the adjoint of D (which 
s self-adjoint hence D 

† = D ), and Z 

† ∈ C 

M 

′ ×M is zero padding in 
ourier space that acts by mapping ˜ γ ∈ C 

M to ˜ γ ′ ∈ C 

M 

′ 
. Note that

hen considering the KS estimate in the super-resolution setting a 
escaling function to account for the different Fourier normalization 
actors must be introduced (which we absorb into the Fourier 
perators). As before, this super-resolution measurement operator 
s concatenated with the inverse covariance weighting to form an 
nalogous composite operator �̄ SR which is used throughout the 
ollowing analysis. 

Conceptually super-resolution allows partial inpainting of higher 
esolution Fourier modes. In this way, one is able to reco v er high-
esolution structure for images from comparatively low resolution 
ata sets. Such high-resolution structure is of course dependent on 
he prior information injected when solving the inverse problem. 
nterestingly this raises another consideration: in scenarios where the 
ix el-lev el observation count is very low the noise level dilutes high-
requency components and can limit the efficacy of reconstruction 
lgorithms. In such a setting, gridding observational data on to a 
ower resolution map, with inherently lower pix el-lev el noise, and 
erforming a super-resolution reconstruction can reco v er far better 
stimates of the high-frequency modes, and thus often recovers 
reater reconstruction fidelity. 

 BAYESIAN  U N C E RTA I N T Y  

UANTIFICATION  

stimators reco v ered from algorithms of the form presented in the
revious section are MAP solutions to, in general, ill-conditioned 
nverse problems, and as such have significant intrinsic uncertainty. 
heoretically, MCMC techniques could be applied to reco v er the 
omplete posterior in the context of Gaussian (Schneider et al. 2015 ;
lsing et al. 2016 ) and sparsity-promoting (Pereyra 2013 ; Cai et al.
017a ) priors but these approaches are computationally demanding 
or high-dimensional problems where N is large. As N can easily 
e larger than 10 6 (e.g. when considering 1024 × 1024 resolution 
mages), MCMC approaches are often not feasible. 

In Pereyra ( 2017 ), a methodology based on probability con- 
entration is presented, which uses MAP estimators to estimate 
heoretically conserv ati v e approximate Bayesian credible re gions 
specifically HPD credible regions) of the posterior, p ( κ| γ ). As this
pproach requires only knowledge of the MAP solution and the ob- 
ective function, the Bayesian credible regions can be approximated 
fficiently in high-dimensional settings. 

.1 Highest posterior density regions 

 posterior credible region at confidence level 100(1 − α) per cent 
s a subset C α ∈ C 

N that satisfies the integral, 

( κ ∈ C α| γ ) = 

∫ 
κ∈ C N 

p( κ| γ ) I C α d κ = 1 − α, (37) 
here I C α is the set indicator function for C α defined by I C α ( κ) =
 ∀ κ ∈ C α and 0 elsewhere. One possible region which satisfies this
roperty is the HPD region defined by, 

 α : = { κ : f ( κ) + g( κ) ≤ εα} , (38) 

here εα defines an iso-contour (i.e. level-set) of the log-posterior 
et such that the integral in (37) is satisfied. This region can be
hown (Robert 2001 ) to have minimum volume and is thus decision-
heoretically optimal. Ho we ver, due to the dimensionality of the
ntegral in (37) calculation of the HPD credible region is difficult.
 conserv ati ve approximation of C α was recently proposed (Pereyra
017 ) and shown to be effective in the inverse imaging setting of
adio interferometric imaging (Cai et al. 2017b ). This approximate 
PD is defined by 

 

′ 
α : = { κ : f ( κ) + g( κ) ≤ ε′ 

α} , (39) 

here the approximate threshold ε′ 
α is given by 

′ 
α = f ( κmap ) + g( κmap ) + τα

√ 

N + N, (40) 

ith constant τα = 

√ 

16 log (3 /α) . For a detailed deri v ation of this
pproximation, see Pere yra ( 2017 ). Pro vided α ∈ [4e xp ( −N /3) , 1]
he deviation of this adapted threshold is bounded and grows at most
inearly with respect to N . The error of this approximate threshold is
ounded by 

 ≤ ε′ 
α − εα ≤ ηα

√ 

N + N, (41) 

here ηα = 

√ 

16 log (3 /α) + 

√ 

1 /α. In high-dimensional settings ( N 

arge), this error may naively appear large; ho we ver, in practice the
rror is relatively small. 

.2 Hypothesis testing 

xtending the concept of HPD credible regions, one can perform 

nock-out hypothesis testing of the posterior to determine the 
hysicality of reco v ered structure (Cai et al. 2017b ). 
To perform such tests, one first creates a surrogate image κ sgt by
asking a feature of interest �D ⊂� in the MAP estimator κmap . It

s then sufficient to check if, 

 ( κ sgt ) + g( κ sgt ) ≤ ε′ 
α. (42) 

f this inequality holds, we interpret that the physicality of �D is
ndetermined and so no strong statistical statement can be made. 
hould the objective function e v aluated at κ sgt be larger than ε′ 

α

hen it no longer belongs to the approximate credible set C 

′ 
α and

herefore (as ε′ 
α is conserv ati ve) it cannot belong to the HPD credible

et C α . Therefore, for κ sgt that do not satisfy the abo v e inequality
e determine the structure �D to be strictly physical at 100(1 −
) per cent confidence level. A schematic of hypothesis testing is 
rovided in Fig. 2 . 
In pixel-space, we begin by masking out a feature of interest,

reating a rough surrogate image – setting the pixels associated with 
 selected structure to 0 – this rough surrogate is then passed through
n appropriate wavelet filter � as part of segmentation-inpainting 
o replace generic background structure into the masked region. 

athematically, this amounts to the iterations, 

( i+ 1) , sgt = κmap I �−�D 
+ � 

† soft λt 
( �κ ( i) , sgt ) I �D 

, (43) 

here �D ⊂� is the subset of masked pixels, I �−�D 
is the set 

ndicator function, and λt is a thresholding parameter that should 
e chosen appropriately for the image. 
MNRAS 506, 3678–3690 (2021) 
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Figure 2. Schematic of hypothesis testing. The feature Z is entirely general 
and can be constructed by any well-defined operator on the MAP solution 
κmap . 
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A second straightforward method for generating surrogate images
s to blur local pixel substructure into one collective structure –
n a process called segmentation-smoothing . This approach pro-
ides a simple way to determine if the substructure in a given
egion is physical or likely to be an artefact of the reconstruction
rocess. 
F or e xample, if sev eral massiv e peaks are located near one another,

ne can blur these structures into a single cohesive peak. This would
e useful when considering peak statistics on convergence maps
which is often used to constrain the cosmological parameters

ssociated with dark matter. 
One can conduct such blurring of structure by: specifying a subset

f the reconstructed pixels �D ⊂�; convolving κmap with a Gaussian
moothing kernel; and replacing pixels that belong to �D with their
moothed counterparts. This can be displayed algorithmically as, 

sgt = κmap I �−�D 
+ ( κmap ∗ G(0 , χ )) I �D 

, (44) 

here G(0 , χ ) is a chosen Gaussian smoothing kernel and ∗ is a
rivially e xtended 2D v ersion of the usual 1D Fourier convolution
perator, 
In the scope of this paper, we focus primarily on pixel-space

eatures, but it is important to stress that knock-out approach is
ntirely general and can be applied to any well-defined feature of
n MAP estimator – i.e. masking certain Fourier space features,
emoval of global small-scale structure, etc. 

 ILLUSTRATION  O N  SIMULATIONS  

e now consider a selection of realistic simulations to illustrate
ur sparse reconstruction method on cluster scales that are partic-
larly challenging for myriad factors. Further to this, we show-
ase the aforementioned uncertainty quantification methods in a
ariety of idealized cluster scale MAP reconstructions. We place
mphasis on uncertainty quantification rather that the reconstruction
delity. 
NRAS 506, 3678–3690 (2021) 
.1 Data sets 

n this paper, we focus primarily on four large clusters (those with
ignificant friends of friends, i.e. significant substructure) extracted
rom the Bolshoi N -body simulation (Klypin et al. 2011 ). On the
luster scale, we showcase our formalism on a variety of Bolshoi
 -body simulation data sets. The Bolshoi N -body cluster simulation
atalogues we work with in this paper are those used in Lanusse
t al. ( 2016 ), which were extracted using the CosmoSim web-tool. 1 

onstruction of these weak lensing realizations assumed a redshift
f 0.3, with a 10 × 10 arcmin 2 field of view, and have convergence
ormalized with respect to lensing sources at infinity. Explicitly this
esults in pixel-dimensions of ∼2.5 arcsec. Due to the relatively
ow particle density, these images were subsequently denoized by a
ultiscale Poisson denoizing algorithm. 

.2 Methodology 

ypically, we begin by creating an artificial shear field ˆ γ ∈ C 

M from
 known ground-truth convergence field κ , that is extracted from a
iven data set. This is a common approach in the imaging community
nd presents a closed scenario in which the true input is known. These
ˆ fields are created by, 

ˆ = � κ + N 

(
0 , σ 2 

i 

)
, (45) 

here σ i (i.e. the noise covariance) is determined entirely from a pre-
efined number density of observations n gal per arcmin 2 , an assumed
ntrinsic ellipticity dispersion of 0.37, and the resolution of the images
in this case 10 arcmin × 10 arcmin). In this way, the noise can be
uned to directly mimic that present in practical settings. Using the
imulated noise covariance (which in practice would be provided
y the observation team), we then utilize the SOPT 

2 framework to
erform our reconstruction algorithm on ˆ γ such that we reco v er a
AP estimator of the convergence κmap . From this reconstructed

onv ergence field, a reco v ered SNR is computed and a selection
f hypothesis tests are conducted to showcase the power of this
ormalism. 

In the case where the underlying clean γ are unavailable (i.e.
pplication to A520 data), we conduct the same analysis as before
ut instead of creating artificial noisy ˆ γ maps we used the real noisy
bservational data. 
Throughout our analysis the reco v ered SNR (dB) is defined to be, 

NR = 20 × log 10 

( ‖ κ‖ 2 
‖ κ − κmap ‖ 2 

)
, (46) 

hen the ground-truth convergence is known. Furthermore, we
uantify the topological similarity between the true convergence and
he estimator via the Pearson correlation coefficient that is defined to
e 

 = 

∑ N S 2 

i= 1 { κmap ( i) − κ̄map }{ κ( i) − κ̄} √ ∑ N S 2 

i= 1 { κmap ( i) − κ̄map } 2 
√ ∑ N S 2 

i= 1 { κ( i) − κ̄} 2 
, (47) 

here x̄ = 〈 x〉 . The correlation coefficient r ∈ [ −1, 1] quantifies
he structural similarity between two data sets: 1 indicates maximal
ositive correlation, 0 indicates no correlation, and −1 indicates
aximal ne gativ e correlation. 

art/stab1983_f2.eps
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Table 1. Contains both reconstruction SNR and Pearson cor- 
relation coefficient (topological correlation) metrics for the raw 

KS (no smoothing), an optimally smoothed KS (grid search 
for smoothing kernel which maximizes the reco v ered SNR), 
and our sparse reconstructions of the Bolshoi-3 cluster sim- 
ulated with realistic noise derived from the presented num- 
ber density of galaxy observations n gal . The difference col- 
umn is calculated as the difference between the Sparse and 
smoothed KS reco v ered SNR. Note that dB is a logarithmic scale 
therefore increases of ∼20 dB are extreme reductions in RMS 
error. 

Input KS KS Sparse Difference 
n gal Smooth 

SNR (dB) 
500 2 .917 6.276 27 .506 + 21 .230 
100 − 4 .497 5.774 21 .955 + 16 .181 
30 − 10 .400 5.340 21 .462 + 16 .122 
10 − 15 .970 5.041 14 .409 + 9 .368 

Pearson correlation 
500 0 .166 0.902 0 .977 + 0 .075 
100 0 .076 0.796 0 .970 + 0 .174 
30 0 .039 0.689 0 .955 + 0 .266 
10 0 .029 0.716 0 .949 + 0 .233 
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.3 Bolshoi cluster catalogues 

he Bolshoi cluster data used consists of four large clusters extracted 
rom the Bolshoi N -body simulation (Klypin et al. 2011 ; Lanusse
t al. 2016 ). These images were then multiscale Poisson denoized 
o create suitable ground truth simulations. We choose to analyse 
he same clusters considered in Lanusse et al. ( 2016 ), as they
howcase a wide variety of structure on all scales. Hereafter, we 
estrict ourselves to the SARA dictionary (Carrillo et al. 2012 ) 
runcated at the 4th Daubechies wavelet (DB4) for simplicity – i.e. 
he combination of the Dirac, and DB1 to DB4 wavelet dictionaries 
nly. 
To investigate the SNR gain of our formalism o v er KS in the

luster scale setting, we created realizations of noisy pseudo-shear 
aps for assumed number density of galaxy observations n gal ∈ 

500, 100, 30, 10] from one Bolshoi cluster map, upon which we
pplied our reconstruction algorithm pipeline. The results of which 
re presented in Table 1 . It should be noted that for comparisons
ake the KS estimate without convolution with a Gaussian smoothing 
ernel is provided in addition to an optimally smoothed KS estimator. 
his has been done to highlight the difference in reconstruction 
delity between the raw KS estimator and the KS estimator after 
ost-processing (Gaussian smoothing), a discrepancy often not 
ddressed by the community. As this post-processing convolution 
s known to degrade the quality of non-Gaussian information (which 
osmologists are becoming increasingly interested in) such plots 
emonstrate the trade-off between non-Gaussian information and 
econstruction fidelity. 

As can be seen in Fig. 3 and Table 1 , sparse approaches signifi-
antly outperform the smoothed (and non-smoothed) KS approach 
n all cases, o v er all metrics tracked. Importantly sparse approaches
re able to reco v er reasonable results even when the noise level
ntirely dilutes the true signal, as in the n gal = 10 setting, making
uch approaches on (at least) cluster data very attractive for future 
tudies. 
.3.1 Hypothesis testing: Bolshoi clusters 

erhaps more interestingly, we now perform a series of hypothesis 
ests as discussed in Section 4.2. For each of the remaining three
olshoi clusters, we construct three possible example hypothesis 

ests which one may wish to perform. In this case, these hypotheses
ere either structure removal followed by segmentation-inpainting; 
r Gaussian smoothing of certain structures (i.e. smoothing multiple 
eaks into a single larger peak which may be of interest when
onducting peak-count analysis). Though these are both extremely 
seful considerations, it is important to stress the generality of our
pproach such that any well-defined operation on the reconstructed 
mage, with a clear understandable hypothesis, is applicable. 

To ensure the method behind hypothesis testing is clear, we will
alk through a typical application. The top row of Fig. 4 displays

he hypothesis tests applied to the first Bolshoi cluster. Conceptually, 
he correct way to interpret Hypothesis 1 (H1, red) is: ‘The central
ark core is likely just an artefact of the reconstruction’ . 
This structure is then remo v ed from the image by segmentation-

npainting (lower left image), and the objective function is then 
ecalculated. It is found that the objective function is now larger
han the approximate level-set threshold ε′ 

99 per cent , the surrogate 
egmentation-inpainted image falls outside of the 99 per cent HPD 

redible region, and so the hypothesis is rejected. This implies that the
tructure is not simply an artefact, but is necessary to the integrity of
he reconstruction, i.e. this structure is now determined to be physical
t 99 per cent confidence. Ho we v er, had remo ving this re gion not
aised the objective function above ε′ 

99 per cent , then the conclusion is 
hat there is insufficient evidence to reject the hypothesis (which is
ot equi v alent to saying that the region is strictly not physical). 
An identical thought process can be applied to H2 and H3 of the top

ow in Fig. 4 , H1 in the second row of Fig. 4 , and all three hypothesis
ests presented in the final row. In each case, a substructure of the κmap 

s remo v ed via se gmentation-inpainting and it is queried whether the
esulting surrogate solution κ sgt ∈ C 

′ 
α . Each of the large substructures

n the final row, and H2 of the second row, are determined to be
hysical at 99 per cent confidence. Conversely, the comparatively 
maller substructures considered in H2 and H3 of the top row do not
aturate the level-set threshold, and are therefore undetermined. All 
umerical data related to hypothesis testing of the Bolshoi cluster 
econstructions can be found in Table 2 . 

H2 and H3 of the middle row of Fig. 4 have a different inter-
retation. In these cases, the central region has been blurred by
egmentation-smoothing (convolution with a Gaussian smoothing 
ernel) – the difference between these two cases being simply the 
egree of smoothing. Here, the hypothesis is: ‘The central region is
ikely to be just a single peak, rather than two’ . As in the previous
 xample, the objectiv e function is recalculated and is now greater than
′ 
99 per cent and so the hypothesis is rejected. The natural conclusion 
s thus that the data is sufficient to determine that at least two peaks
re physically present at 99 per cent confidence. 

 APPLI CATI ON  TO  ABELL  5 2 0  

BSERVA  T I O NA L  C A  TA L O G U E S  

e perform an application of our entire reconstruction pipeline to 
eal observational data sets. We select two observational data sets 
f the A520 cluster (Clowe et al. 2012 ; Jee et al. 2014 ) – hereafter,
or clarity we refer to them as C12 and J14 (as in Peel et al. 2017 ). 3 
MNRAS 506, 3678–3690 (2021) 
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Figure 3. Top to bottom: Ground truth convergence map, simulations with noise levels corresponding to n gal ∈ [500, 100, 30, 10], respectively. Notice the 
clear ef fecti veness of sparse reconstruction o v er the standard KS method for a range of input SNR values. The numerical details can be found in Table 1 . The 
vertical labels indicate the input n gal used to simulate realistic noise for a gi ven ro w, whereas horizontal labels indicate the reconstruction type. An optimal 
(grid searched to maximize the reco v ered SNR) Gaussian smoothing kernel was applied to the KS reco v ery to yield the KS (smooth) reco v ery in an attempt 
to remo v e noise from the KS estimator (ob viously this is not possible in practice, where the ground truth is unkno wn: results sho wn therefore present the best 
possible performance for the smoothed KS estimator). Clearly, in all cases, the super-resolution sparse approach produces convergence maps that are far more 
representative of the ground truth across the aforementioned metrics. 
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Figure 4. General: Hypothesis testing of three selected structures in the Bolshoi-1 cluster convergence field. The number density of galaxy observations n gal 

was set idealistically to 500 arcmin −2 simply for demonstration purposes. Additionally super-resolution was not active and the masking was trivially set to the 
identity, again to simplify the example for demonstration purposes. All numerical details can be found in T able 2 . T op row: W e correctly determine that region 
1 ( red ) is physical with 99 per cent confidence. Regions 2 ( blue ) and 3 ( green ) remain within the HPD region and are therefore inconclusi ve, gi ven the data and 
noise level. Middle row: We correctly determine that all three null hypotheses ( red, blue and green ) are rejected at 99 per cent confidence. In H1, the conclusion 
is that the left hand peak was statistically significant. In H2 and H3, the conclusion is that an image with the two peaks merged it unacceptable, and therefore the 
peaks are distinct at 99 per cent confidence. Bottom row: We correctly determine that all three hypothesis regions ( red, blue , and green ) �D are physical with 
99 per cent confidence. 
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or a full description of the data sets, how they were constructed,
nd how they account for different systematics we recommend the 
eader look to the respective papers. These initial investigations 
laim to have detected several over dense regions within the merging 
520 system, the most peculiar of which was a so-called dark core

location 2 in Fig. 5 ) for which multiwavelength observations could 
ot determine an optical counterpart. Such a dark core would provide 
 contradiction to the currently understood model of collisionless 
ark matter – the idea being that during the collision of two massive
lusters, dark matter was stripped from each cluster through self- 
nteractions, forming an o v erdense residual between the two clusters,
hich would naturally not exhibit an optical counterpart. 
The J14 catalogue contains approximately twice the number of 

alaxies than C12 , though both are derived from the same ACS (four
ointings) and Magellan images. In addition, J14 combines these 
mages with the CFHT catalogue used in the authors’ previous work 
Jee et al. 2012 ). The C12 observing area e xtends o v er a larger
ngular surface than the J14 , so for this analysis we limit both
ata sets to the region spanned by both sets. Due to the number
ensity of measurements being very low, we are forced to project
he measurements into a 32 × 32 grid – to ensure that the average
umber of galaxies in each grid pixel is at least above 1, though
deally we want many galaxies in each pixel to minimize the noise
ontribution from intrinsic ellipticity. In fact, even in this resolution 
he space is incomplete in several pixels, but we draw a compromise
etween the completeness of the space and the resolution of the
ata. 
The data covariance was constructed directly from the number 

ensity of observations per pixel (directly inferred during catalogue 
ridding), with an assumed intrinsic ellipticity dispersion of 0.37. 
ombining this data covariance, the associated gridded data sets, 
nd the associated mask, MAP reconstructions of the C12 and J14
onvergence maps were recovered at a super-resolution magnifica- 
ion of 8. Reconstructions are presented in Fig. 5 . 
MNRAS 506, 3678–3690 (2021) 
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Table 2. Displays the MAP objective function, level-set threshold at 
99 per cent confidence, surrogate objective function, and whether the 
remo v ed re gion was successfully identified as being physical. This 
data set corresponds to Fig. 4 . 

Test Initial Threshold Surrogate Reject 
f ( κ) + g ( κ) ε′ 

99% 

f ( κsgt ) + g ( κsgt ) H 0 ? 

Bolshoi-1 
H1 95 426 163 408 805 513 � 

H2 95 426 163 408 134 080 ×
H3 95 426 163 408 100 582 ×

Bolshoi-2 
H1 97 121 165 103 824 260 � 

H2 97 121 165 103 221 492 � 

H3 97 121 165 103 366 981 � 

Bolshoi-3 
H1 83 419 151 401 369 939 � 

H2 83 419 151 401 234 305 � 

H3 83 419 151 401 314 089 � 
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Figure 5. Top: Super-resolution sparse Bayesian reconstruction of J14 and 
C12 , respectively. In a Bayesian manner, it is found that the two data sets 
do not globally disagree at 99 per cent confidence. Ho we ver, gi ven the data 
resolution and noise levels, only peaks 1 and 3 (in both data sets) could be 
determined to be statistically significant. This is not to say that they do not 
exist, but implies that the data quantity and quality are insufficient to make a 
robust, principled statistical statement that could be used as evidence of their 
existence. The contested peak 2 is not detected at any reasonable confidence 
in either data set. 
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.1 Hypothesis testing of local structure: A520 data sets 

e conducted hypothesis tests on the three primary o v erdense
egions, in addition to the contested dark core, in both the C12
nd J14 data sets. In the absence of an optical counterpart, detection
t high confidence of the dark core (location 2 in Fig. 5 ) would
rovide a contradiction to the collisionless model of dark matter
indicating potential self-interaction of dark matter. Due to the

igh estimated noise level present in the data, and the limited data
esolution, only the two largest peaks in both data sets (peaks 1 and
 of Fig. 5 ) sufficiently raised the objective function to reject the
ypothesis at any meaningful confidence. This is to say that given
he limited, noisy data and using the measurement operator and
rior ( � 1 -term) presented in this paper we can say that the data are
nsufficient to statistically determine the physicality of local small-
cale substructure (such as the dark core) in both the C12 and J14 data
ets. The initial conflict between C12 and J14 was o v er the existence
nd position of a dark core (location 2 in Fig. 5 ), with a notably large
ass-to-light ratio, indicating the possibility of self-interacting dark
atter. A subsequent inquiry was conducted (Peel et al. 2017 ) using

he GLIMPSE reconstruction algorithm (Lanusse et al. 2016 ) and
oncluded that this peculiar peak existed in the J14 data set but not
n the C12 data set. 

As such, our conclusions agree well with Peel et al. ( 2017 ) (and
enerally with those drawn in both C12 and J14 ). Ho we ver, within
ur Bayesian hierarchical formalism (which constitutes a principled
tatistical framework), we push this conclusion further to say that the
ata are insufficient to determine the physicality of these peaks. 

.2 Hypothesis testing of global structure: A520 data sets 

nterestingly, we can perform a final no v el hypothesis test of global
tructure. This hypothesis is as follows: ‘The two MAP estimates
re consistent with both sets of data’, i.e. the MAP convergence
stimate reco v ered from the J14 ( C12 ) data is within the credible set
at 99 per cent confidence) of the C12 ( J14 ) objective function. We
nd that the J14 ( C12 ) MAP reconstruction is an acceptable solution

o the C12 ( J14 ) inverse problem and so the MAP solutions do not
isagree – numerically this is shown in Table 3 . 
Given the inherent limitations of the data, we are forced to

onclude: ‘The data are insufficient to determine the existence of
ndividual substructures at high confidence – though the two largest
NRAS 506, 3678–3690 (2021) 
 v erdense re gions are found to be globally physical at 99 per cent
onfidence. The two MAP estimates are also found to be consistent
t 99 per cent confidence’. 

 C O N C L U S I O N S  

e have presented a sparse hierarchical Bayesian mass-mapping
lgorithm that provides a principled statistical framework through
hich, for the first time, we can conduct uncertainty quantification
n reco v ered conv ergence maps without relying on an y assumptions

art/stab1983_f5.eps
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Table 3. Displays the MAP objective function, level-set threshold at 99 
per cent confidence, surrogate objective function, and whether the null 
hypothesis H 0 is rejected. As can be seen, both MAP solutions fail to reject 
the null hypothesis in the other’s objective function. This leads us to conclude 
that the two data sets do not disagree at 99 per cent confidence. Further 
discussion akin to the K ullback–Leibler div ergence of the two posteriors is 
beyond the scope of this paper, but perhaps of interest in future work. 

Hypothesis Initial Threshold Surrogate Reject 
test f ( κ) + g ( κ) ε′ 

99 per cent f ( κsgt ) + g ( κsgt ) H 0 ? 

C12 ⇔ J14 99 231 168 044 125 601 ×
J14 ⇔ C12 98 943 167 243 134 391 ×
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f Gaussianity. Moreo v er, the presented formalism dra ws on ideas
rom conv e x optimization (rather than MCMC techniques), which 
akes it notably fast and allows it to scale well to big data, i.e. high-

esolution and wide-field convergence reconstructions (which will 
e essential for future stage IV surv e ys, such as LSST and Euclid). 
Additionally, we demonstrate a hierarchical Bayesian inference 

pproach to automatically approximate the regularization parameter, 
nd show that it produces near-optimal results in a variety of cases.
e, ho we ver, note that this approach does not work generally, and

an be unstable in extreme settings. 
We showcase our Bayesian inference approach (with emphasis 

n the application of the uncertainty quantification techniques) on 
oth simulation data sets and observational data (the A520 merging 
luster data set). Our mass-mapping formalism is shown to produce 
ignificantly more accurate convergence reconstruction than the 
aiser–Squires estimator on all simulations considered. Hypothesis 

ests of substructure are demonstrated. 
It is found that neither of the two A520 data sets considered

ould provide sufficient evidence to determine the physicality of 
ny contested substructure (i.e. the existence of so-called dark cores) 
t significant confidence. It is informative to note that our methods 
ere, in fact, sufficiently sensitive to detect the largest peaks in both
ata sets at 99 per cent confidence. None the less, global hypothesis 
ests indicate a good agreement between the two sets of data. These
onclusions are roughly in agreement with those drawn previously 
ut go further to demonstrate just how uncertain these types of
luster-scale weak lensing reconstructions inherently are (typically 
s a limitation of the relative information content of low-resolution, 
oisy data sets). 
It is now natural to extend this formalism to the entire celestial

phere – a necessity of large-scale reconstruction techniques that aim 

o fully utilize the forthcoming Euclid and LSST 

4 surv e y data. 
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