163 research outputs found

    An Epstein-Barr Virus Anti-Apoptotic Protein Constitutively Expressed in Transformed Cells and Implicated in Burkitt Lymphomagenesis: The Wp/BHRF1 Link

    Get PDF
    Two factors contribute to Burkitt lymphoma (BL) pathogenesis, a chromosomal translocation leading to c-myc oncogene deregulation and infection with Epstein-Barr virus (EBV). Although the virus has B cell growth–transforming ability, this may not relate to its role in BL since many of the transforming proteins are not expressed in the tumor. Mounting evidence supports an alternative role, whereby EBV counteracts the high apoptotic sensitivity inherent to the c-myc–driven growth program. In that regard, a subset of BLs carry virus mutants in a novel form of latent infection that provides unusually strong resistance to apoptosis. Uniquely, these virus mutants use Wp (a viral promoter normally activated early in B cell transformation) and express a broader-than-usual range of latent antigens. Here, using an inducible system to express the candidate antigens, we show that this marked apoptosis resistance is mediated not by one of the extended range of EBNAs seen in Wp-restricted latency but by Wp-driven expression of the viral bcl2 homologue, BHRF1, a protein usually associated with the virus lytic cycle. Interestingly, this Wp/BHRF1 connection is not confined to Wp-restricted BLs but appears integral to normal B cell transformation by EBV. We find that the BHRF1 gene expression recently reported in newly infected B cells is temporally linked to Wp activation and the presence of W/BHRF1-spliced transcripts. Furthermore, just as Wp activity is never completely eclipsed in in vitro–transformed lines, low-level BHRF1 transcripts remain detectable in these cells long-term. Most importantly, recognition by BHRF1-specific T cells confirms that such lines continue to express the protein independently of any lytic cycle entry. This work therefore provides the first evidence that BHRF1, the EBV bcl2 homologue, is constitutively expressed as a latent protein in growth-transformed cells in vitro and, in the context of Wp-restricted BL, may contribute to virus-associated lymphomagenesis in vivo

    Riverbed sediments buffer phosphorus concentrations downstream of sewage treatment works across the River Wensum catchment, UK

    Get PDF
    Purpose: Wastewater effluent discharged into rivers from sewage treatment works (STWs) represents one of the most important point sources of soluble reactive phosphorus (SRP) pollution and is a major driver of freshwater eutrophication. In this study, we assess the ability of riverbed sediments to act as a self-regulating buffering system to reduce SRP dissolved in the water column downstream of STW outflows. Materials and methods: River water and riverbed sediment samples were collected from 10 tributary outlets across the River Wensum catchment, Norfolk, UK, at monthly intervals between July and October 2016, such that 40 sediment and 40 water samples were collected in total. Of these locations, five were located downstream of STWs and five were on tributaries without STWs. Dissolved SRP concentrations were analysed and the Equilibrium Phosphorus Concentration (EPC0) of each sediment sample was measured to determine whether riverbed sediments were acting as net sources or sinks of SRP. Results and discussion: The mean SRP concentration downstream of STWs (382 µg P L-1) was double that of sites without a STW (185 µg P L-1), whilst the mean EPC0 for effluent impacted sites (105 µg P L-1) was 70% higher than that recorded at unaffected sites (62 µg P L-1). Regardless of STW influence, riverbed sediments across all 10 sites almost always acted as net sinks for SRP from the overlying water column. This was particularly true at sites downstream of STWs which displayed enhanced potential to buffer the river against increases in SRP released in sewage effluent. Conclusions: Despite EPC0 values revealing riverbed sediments were consistently acting as sinks for SRP, elevated SRP concentrations downstream of STWs clearly demonstrate the sediments have insufficient SRP sorption capacity to completely buffer the river against effluent discharge. Consequently, SRP concentrations across the catchment continue to exceed recommended standards for good chemical status, thus emphasising the need for enhanced mitigation efforts at STWs to minimise riverine phosphorus loading

    Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity

    Get PDF
    © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P < 0.1) with observed variations in tropical-cyclone climatology, and that a substantial portion (32 per cent) of the suspended sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems

    Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine?

    Get PDF
    Scots pine (Pinus sylvestris; Pinaceae, Pinales) is known to defend against egg deposition by herbivorous sawflies by changing its terpenoid volatile blend. The oviposition-induced pine odor attracts egg parasitoids that kill the sawfly eggs. Here, we investigated whether sawfly egg deposition activates genes encoding pine terpene synthases by extracting mRNA from oviposition-induced P. sylvestris. Three new sesquiterpene synthases, PsTPS 1, PsTPS 2, and PsTPS 3, were isolated that were shown on heterologous expression in Escherichia coli to produce (E)-β-caryophyllene and α-humulene (PsTPS 1), 1(10),5-germacradiene-4-ol (PsTPS 2), and longifolene and α-longipinene (PsTPS 3) as their principal products. Quantitative RT-PCR analyses revealed that transcript levels of PsTPS 1 and PsTPS 2 were significantly higher in oviposition-induced twigs that were attractive to the parasitoids than in non-attractive, artificially damaged twigs. Thus, our results demonstrate a specific transcription response to egg deposition, distinct from that caused by artificial wounding. Transcripts of PsTPS 3 did not change in response to egg deposition. The transcript levels of PsTPS 1, PsTPS 2, and PsTPS 3 were also determined in relation to time after egg deposition, since pine odor is attractive to the parasitoid only 72 h after egg deposition. Transcription rates of PsTPS 1 and PsTPS 2 were significantly enhanced only 72 h after egg deposition, thus matching the timing of odor attractiveness, while for PsTPS 3, enhanced transcription was not detected at any time period studied after egg deposition. The ecological significance of the oviposition-induced increase of sesquiterpene synthase transcripts is discussed

    Female preference for blue in Japan blue guppies (Poecilia reticulata)

    Get PDF
    Guppies (Poecilia reticulata) are widely used as a model species in mate choice studies. Although native to South America, guppies have been introduced to natural water bodies in disparate regions of the globe. Here, for the first time, we examine guppies from one such introduced population in Japan where males have evolved a predominantly blue color pattern. Previous studies of wild-type guppies have shown blue to play a relatively minor role in the mate choice decisions of females compared to other traits, such as orange, and the importance of blue is not universally supported by all studies. The Japanese population therefore presents an ideal opportunity to re-examine the potential significance of blue as a mate choice cue in guppies. Mate choice experiments, in which female Japan blue guppies were given a choice between pairs of males that differed in their area of blue coloration but were matched for other traits, revealed that females prefer males with proportionately larger amounts of blue in their color patterns. We discuss possible factors, including sexual and ecological selection, which may have led to the evolution of unusually large areas of blue at the expense of other colors in Japan blue guppies. However, further studies are needed to distinguish between these scenarios.Web of Scienc

    Herpes-Virus Infection in Patients with Langerhans Cell Histiocytosis: A Case-Controlled Sero-Epidemiological Study, and In Situ Analysis

    Get PDF
    BACKGROUND: Langerhans cell histiocytosis (LCH) is a rare disease that affects mainly young children, and which features granulomas containing Langerhans-type dendritic cells. The role of several human herpesviruses (HHV) in the pathogenesis of LCH was suggested by numerous reports but remains debated. Epstein-barr virus (EBV, HHV-4), & Cytomegalovirus (CMV, HHV-5) can infect Langerhans cells, and EBV, CMV and HHV-6 have been proposed to be associated with LCH based on the detection of these viruses in clinical samples. METHODOLOGY: We have investigated the prevalence of EBV, CMV and HHV-6 infection, the characters of antibody response and the plasma viral load in a cohort of 83 patients and 236 age-matched controls, and the presence and cellular localization of the viruses in LCH tissue samples from 19 patients. PRINCIPAL FINDINGS: The results show that prevalence, serological titers, and viral load for EBV, CMV and HHV-6 did not differ between patients and controls. EBV was found by PCR in tumoral sample from 3/19 patients, however, EBV small RNAs EBERs -when positive-, were detected by in situ double staining in bystander B CD20+ CD79a+ lymphocytes and not in CD1a+ LC. HHV-6 genome was detected in the biopsies of 5/19 patients with low copy number and viral Ag could not be detected in biopsies. CMV was not detected by PCR in this series. CONCLUSIONS/SIGNIFICANCE: Therefore, our findings do not support the hypothesis of a role of EBV, CMV, or HHV-6 in the pathogenesis of LCH, and indicate that the frequent detection of Epstein-barr virus (EBV) in Langerhans cell histiocytosis is accounted for by the infection of bystander B lymphocytes in LCH granuloma. The latter observation can be attributed to the immunosuppressive micro environment found in LCH granuloma

    Genetic Diversity of EBV-Encoded LMP1 in the Swiss HIV Cohort Study and Implication for NF-Κb Activation

    Get PDF
    Epstein-Barr virus (EBV) is associated with several types of cancers including Hodgkin's lymphoma (HL) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1), a multifunctional oncoprotein, is a powerful activator of the transcription factor NF-κB, a property that is essential for EBV-transformed lymphoblastoid cell survival. Previous studies reported LMP1 sequence variations and induction of higher NF-κB activation levels compared to the prototype B95-8 LMP1 by some variants. Here we used biopsies of EBV-associated cancers and blood of individuals included in the Swiss HIV Cohort Study (SHCS) to analyze LMP1 genetic diversity and impact of sequence variations on LMP1-mediated NF-κB activation potential. We found that a number of variants mediate higher NF-κB activation levels when compared to B95-8 LMP1 and mapped three single polymorphisms responsible for this phenotype: F106Y, I124V and F144I. F106Y was present in all LMP1 isolated in this study and its effect was variant dependent, suggesting that it was modulated by other polymorphisms. The two polymorphisms I124V and F144I were present in distinct phylogenetic groups and were linked with other specific polymorphisms nearby, I152L and D150A/L151I, respectively. The two sets of polymorphisms, I124V/I152L and F144I/D150A/L151I, which were markers of increased NF-κB activation in vitro, were not associated with EBV-associated HL in the SHCS. Taken together these results highlighted the importance of single polymorphisms for the modulation of LMP1 signaling activity and demonstrated that several groups of LMP1 variants, through distinct mutational paths, mediated enhanced NF-κB activation levels compared to B95-8 LMP1

    The B-Cell Specific Transcription Factor, Oct-2, Promotes Epstein-Barr Virus Latency by Inhibiting the Viral Immediate-Early Protein, BZLF1

    Get PDF
    The Epstein-Barr virus (EBV) latent-lytic switch is mediated by the BZLF1 immediate-early protein. EBV is normally latent in memory B cells, but cellular factors which promote viral latency specifically in B cells have not been identified. In this report, we demonstrate that the B-cell specific transcription factor, Oct-2, inhibits the function of the viral immediate-early protein, BZLF1, and prevents lytic viral reactivation. Co-transfected Oct-2 reduces the ability of BZLF1 to activate lytic gene expression in two different latently infected nasopharyngeal carcinoma cell lines. Furthermore, Oct-2 inhibits BZLF1 activation of lytic EBV promoters in reporter gene assays, and attenuates BZLF1 binding to lytic viral promoters in vivo. Oct-2 interacts directly with BZLF1, and this interaction requires the DNA-binding/dimerization domain of BZLF1 and the POU domain of Oct-2. An Oct-2 mutant (Δ262–302) deficient for interaction with BZLF1 is unable to inhibit BZLF1-mediated lytic reactivation. However, an Oct-2 mutant defective for DNA-binding (Q221A) retains the ability to inhibit BZLF1 transcriptional effects and DNA-binding. Importantly, shRNA-mediated knockdown of endogenous Oct-2 expression in several EBV-positive Burkitt lymphoma and lymphoblastoid cell lines increases the level of lytic EBV gene expression, while decreasing EBNA1 expression. Moreover, treatments which induce EBV lytic reactivation, such as anti-IgG cross-linking and chemical inducers, also decrease the level of Oct-2 protein expression at the transcriptional level. We conclude that Oct-2 potentiates establishment of EBV latency in B cells

    Salivary Glucose Oxidase from Caterpillars Mediates the Induction of Rapid and Delayed-Induced Defenses in the Tomato Plant

    Get PDF
    Caterpillars produce oral secretions that may serve as cues to elicit plant defenses, but in other cases these secretions have been shown to suppress plant defenses. Ongoing work in our laboratory has focused on the salivary secretions of the tomato fruitworm, Helicoverpa zea. In previous studies we have shown that saliva and its principal component glucose oxidase acts as an effector by suppressing defenses in tobacco. In this current study, we report that saliva elicits a burst of jasmonic acid (JA) and the induction of late responding defense genes such as proteinase inhibitor 2 (Pin2). Transcripts encoding early response genes associated with the JA pathway were not affected by saliva. We also observed a delayed response to saliva with increased densities of Type VI glandular trichomes in newly emerged leaves. Proteomic analysis of saliva revealed glucose oxidase (GOX) was the most abundant protein identified and we confirmed that it plays a primary role in the induction of defenses in tomato. These results suggest that the recognition of GOX in tomato may represent a case for effector-triggered immunity. Examination of saliva from other caterpillar species indicates that saliva from the noctuids Spodoptera exigua and Heliothis virescens also induced Pin2 transcripts
    corecore