421 research outputs found
Classification of uranium ore concentrates applying support vector machine to spectrophotometric and textural features
Uranium ore concentrates (UOCs) are produced in the early stages of the nuclear fuel cycle, prior to conversion to uranium hexafluoride. Because of their high uranium content and the large-scale production, UOCs diversion from civilian use and proliferation are potential risks. This implies the necessity to develop methods able to recognise characteristic parameters correlating each UOC powder to its history and origin. Here, a novel methodology is proposed: first the reflectance spectra of 79 commercial UOCs are acquired and clustered by means of Ward\u27s clustering analysis, then classified by Support Vector Machine (SVM). Second, SVM classification is applied to the image textural features extracted with the Grey Level Co-occurrence Matrix (GLCM) and the Angle Measure Technique (AMT) algorithms for powders in two different colour groups. The developed SVM models present good classification quality: a Matthews correlation coefficient (MCC) of 0.95 is obtained for the classification based on colours while macro-F1 is generally greater than 0.81 (MCC larger than 0.75) for the texture-based classification. These results reveal the potentiality of the present automated classification for the scopes of nuclear forensics in the identification of an unknown uranium ore concentrate sample
Factors increase social welfare of the population in the knowledge economy
At present, the knowledge economy plays a very important role. It is the key to competitiveness in the market and is the driving force of enhanced social life of mankind. Improving the welfare conditions of the knowledge economy is a very urgent problem that most countries are particularly interested. This problem mainly be promoted based on the development of cognitive capital
Oral cancer: role of the basement membrane in invasion
The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.Invasive growth of cancer cells is a complex process involving specific interactions between tumour cells and the orderly, integrated complexes of the extracellular matrix. Basement membranes have been proposed as one constituent of extra-cellular matrix which carries responsibility for regulating invasion and metastasis.David F. Wilson, Jiang De-Jun, Angela M. Pierce and Ole W. Wiebki
Complete results for five years of GNO solar neutrino observations
We report the complete GNO solar neutrino results for the measuring periods
GNO III, GNO II, and GNO I. The result for GNO III (last 15 solar runs) is
[54.3 + 9.9 - 9.3 (stat.)+- 2.3 (syst.)] SNU (1 sigma) or [54.3 + 10.2 - 9.6
(incl. syst.)] SNU (1 sigma) with errors combined. The GNO experiment is now
terminated after altogether 58 solar exposure runs that were performed between
May 20, 1998 and April 9, 2003. The combined result for GNO (I+II+III) is [62.9
+ 5.5 - 5.3 (stat.) +- 2.5 (syst.)] SNU (1 sigma) or [62.9 + 6.0 - 5.9] SNU (1
sigma) with errors combined in quadrature. Overall, gallium based solar
observations at LNGS (first in GALLEX, later in GNO) lasted from May 14, 1991
through April 9, 2003. The joint result from 123 runs in GNO and GALLEX is
[69.3 +- 5.5 (incl. syst.)] SNU (1 sigma). The distribution of the individual
run results is consistent with the hypothesis of a neutrino flux that is
constant in time. Implications from the data in particle- and astrophysics are
reiterated.Comment: 22 pages incl. 9 Figures and 8 Tables. to appear in: Physics Letters
B (accepted April 13, 2005) PACS: 26.65.+t ; 14.60.P
Activation of AMP-Activated Protein Kinase by Interleukin-6 in Rat Skeletal Muscle: Association With Changes in cAMP, Energy State, and Endogenous Fuel Mobilization
OBJECTIVE: Interleukin-6 (IL-6) directly activates AMP-activated protein kinase (AMPK) in vivo and in vitro; however, the mechanism by which it does so is unknown. RESEARCH DESIGN AND METHODS: We examined this question in skeletal muscle using an incubated rat extensor digitorum longus (EDL) muscle preparation as a tool. RESULTS: AMPK activation by IL-6 coincided temporally with a nearly threefold increase in the AMP:ATP ratio in the EDL. The effects of IL-6 on both AMPK activity and energy state were inhibited by coincubation with propranolol, suggesting involvement of β-adrenergic signaling. In keeping with this notion, IL-6 concurrently induced a transient increase in cAMP, and its ability to activate AMPK was blocked by the adenyl cyclase inhibitor 2′5′-dideoxyadenosine. In addition, like other β-adrenergic stimuli, IL-6 increased glycogen breakdown and lipolysis in the EDL. Similar effects of IL-6 on AMPK, energy state, and cAMP content were observed in C2C12 myotubes and gastrocnemius muscle in vivo, indicating that they were not unique to the incubated EDL. CONCLUSIONS: These studies demonstrate that IL-6 activates AMPK in skeletal muscle by increasing the concentration of cAMP and, secondarily, the AMP:ATP ratio. They also suggest that substantial increases in IL-6 concentrations, such as those that can result from its synthesis by muscles during exercise, may play a role in the mobilization of fuel stores within skeletal muscle as an added means of restoring energy balance.United States Public Health Service (RO1DK19514, RO1DK067509); Ruth L.
Kirschstein NRSA Postdoctoral Training Grant (HL-07224); Fonds de la Recherche en Santé du Québe
Gene-Based Modeling of Methane Oxidation in Coastal Sediments: Constraints on the Efficiency of the Microbial Methane Filter
Methane is a powerful greenhouse gas that is produced in large quantities in marine sediments. Microbially mediated oxidation of methane in sediments, when in balance with methane production, prevents the release of methane to the overlying water. Here, we present a gene-based reactive transport model that includes both microbial and geochemical dynamics and use it to investigate whether the rate of growth of methane oxidizers in sediments impacts the efficiency of the microbial methane filter. We focus on iron- and methane-rich coastal sediments and, with the model, show that at our site, up to 10% of all methane removed is oxidized by iron and manganese oxides, with the remainder accounted for by oxygen and sulfate. We demonstrate that the slow growth rate of anaerobic methane-oxidizing microbes limits their ability to respond to transient perturbations, resulting in periodic benthic release of methane. Eutrophication and deoxygenation decrease the efficiency of the microbial methane filter further, thereby enhancing the role of coastal environments as a source of methane to the atmosphere
Nutrient Stress Activates Inflammation and Reduces Glucose Metabolism by Suppressing AMP-Activated Protein Kinase in the Heart
OBJECTIVE: Heart failure is a major cause of mortality in diabetes and may be causally associated with altered metabolism. Recent reports indicate a role of inflammation in peripheral insulin resistance, but the impact of inflammation on cardiac metabolism is unknown. We investigated the effects of diet-induced obesity on cardiac inflammation and glucose metabolism in mice.
RESEARCH DESIGN AND METHODS: Male C57BL/6 mice were fed a high-fat diet (HFD) for 6 weeks, and heart samples were taken to measure insulin sensitivity, glucose metabolism, and inflammation. Heart samples were also examined following acute interleukin (IL)-6 or lipid infusion in C57BL/6 mice and in IL-6 knockout mice following an HFD.
RESULTS: Diet-induced obesity reduced cardiac glucose metabolism, GLUT, and AMP-activated protein kinase (AMPK) levels, and this was associated with increased levels of macrophages, toll-like receptor 4, suppressor of cytokine signaling 3 (SOCS3), and cytokines in heart. Acute physiological elevation of IL-6 suppressed glucose metabolism and caused insulin resistance by increasing SOCS3 and via SOCS3-mediated inhibition of insulin receptor substrate (IRS)-1 and possibly AMPK in heart. Diet-induced inflammation and defects in glucose metabolism were attenuated in IL-6 knockout mice, implicating the role of IL-6 in obesity-associated cardiac inflammation. Acute lipid infusion caused inflammation and raised local levels of macrophages, C-C motif chemokine receptor 2, SOCS3, and cytokines in heart. Lipid-induced cardiac inflammation suppressed AMPK, suggesting the role of lipid as a nutrient stress triggering inflammation.
CONCLUSIONS: Our findings that nutrient stress activates cardiac inflammation and that IL-6 suppresses myocardial glucose metabolism via inhibition of AMPK and IRS-1 underscore the important role of inflammation in the pathogenesis of diabetic heart
- …